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The discontinuity equations are derived for all singularities of multiparticle scattering functions that
enter the portion of the physical region lying below the four-particle threshold. These equations, which
are the precise statements of the Cutkosky formulas, are calculated directly from the unitarity equations.
The only analyticity properties used are those obtained from the S-matrix macroscopic-causality condi-
tion. That is, the scattering functions are taken to be analytic in the physical region except on positive-a
Landau surfaces, around which they continue in accordance with the well-defined plus-ie rule.

1. INTRODUCTION

The purpose of this paper, and of several that will
follow, is to derive formulas for discontinuities across
singularities of many-particle scattering functions.
These formulas are needed for the extension of general
dispersion methods to many-particle reactions.

Discontinuity equations have been derived by
Cutkosky in the framework of perturbation theory.!
His result states that the discontinuity around a
surface A[D] corresponding to a Landau diagram D
is obtained by associating the vertices of D with
scattering functions and performing an integration
over the momentum vectors associated with the
internal lines of D. These formulas are, however,
essentially incomplete, for they include no general
rule specifying upon which sheets one evaluates the
various functions that occur. In the simplest case of a
normal threshold in a two-particle scattering function,
the two functions that occur in the discontinuity
formula are the physical scattering function and its
Hermitian conjugate, whereas in the case of the
triangle singularity of the 3 — 3 (three-particle to
three-particle) amplitude, all the occurring functions
are physical scattering amplitudes. In other cases,
certain functions in the discontinuity formula are
neither the physical function nor its Hermitian
conjugate, but are functions on other sheets. In fact,
it has not actually been proved that the functions in
the discontinuity formulas are in all cases merely the
continuation of a scattering function to some sheet.

The problem of finding discontinuity formulas has
been examined earlier in the S-matrix framework by
Gunson,? Stapp,® and Olive.* Their approach has been

* This work was done under the auspices of the U.S. Atomic
Energy Commission.
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essentially to verify, within certain approximations,
the consistency of certain conjectured discontinuity
formulas. Certain normal-threshold discontinuity
formulas have been derived by Hwa using crossing,
and working to lowest order.?

More recently, Landshoff and Olive® have derived
the discontinuity across the singularity of the triangle
diagram of the 3 — 3 amplitude in the physical region,
and their method has been applied by others™ 10 to
singularities associated with various other diagrams.
The method of Landshoff and Olive is, however, quite
complicated. It requires a detailed investigation of
specific features of Landau curves, an examination
of the properties of certain integrals, and a tracing of
paths of continuation, and it depends on delicate
cancellations of various terms. Also, it requires a
complete enumeration of the “generation” and
“regeneration” mechanisms of the singularity, and
this is not easily obtained except in the simplest cases.
Finally, each singularity is a separate problem.

In the present paper we develop an alternative
method for calculating the discontinuities of the
(connected part) physical-region scattering amplitude
M. This function has singularities only on positive-a
Landau surfaces, and it can be continued past these in
accordance with a well-defined plus-ie rule.!'12 The
discontinuities around these singularities are obtained
in this paper directly from the unitarity equations
through manipulations that bring these equations into
a form that displays explicitly the appropriate dis-
continuity function. Specifically, a unitarity equation

5 R. C. Hwa, Phys. Rev. 134, B1086 (1964).

¢ P. V. Landshoff and D. I. Olive, J. Math. Phys. 7, 1464 (1966).

? P. V. Landshoff, D. 1. Olive, and J. C. Polkinghorne, J. Math.
Phys. 7, 1593 (1966).

8 P. V. Landshoff, D. I. Olive, and J. C. Polkinghorne, J. Math.
Phys. 7, 1600 (1966).

9 M. J. W. Bloxham, Nuovo Cimento 44A, 794 (1966).

107, K. Storrow, Nuovo Cimento (to be published).

11 C. Chandler and H. P. Stapp, “Macroscopic Causality Condi-
tions and Properties of Scattering Amplitudes,” (to be published in
J. Math. Phys.); and D. Iagolnitzer and H. P. Stapp (in preparation).

12 F. Pham, CERN preprint, 1966; Ann. Inst. Henri Poincaré 6,
89 (1967).
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FiG. 1. The elementary diagrams of the 3 — 3 amplitude below
the four-particle threshold. All positive-o Landau surfaces for the
3 — 3 amplitude below the four-particle threshold are contained in
the union of the positive-a Landau surfaces corresponding to the set
of diagrams consisting of (1) the set of elementary diagrams, (2) the
set of reflections of elementary diagrams, and (3) the set of diagrams
obtained from diagrams of these two sets by replacing any set of
simple inner vertices by single two-particle closed loops. Simple
vertices are vertices directly connected to no other vertex by more
than one line. Inner vertices are vertices not standing on the extreme
right or left of the diagram. The second figure in (e) contains a
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single two-particle closed loop. The analogous part of the first figure -

in (e) is called a three-particle closed loop.

is converted, using unitarity, into the form

M* = T(D) + R(D), (1.1
where 7(D) vanishes on one side (called the un-
physical side) of the positive-x Landau surface
M+[D] associated with the Landau diagram D, and
R(D) is known to have a minus-ie continuation around
MH[D]. That R(D) has a minus-ie continuation
around M*T[D] means that the function R(D) is
carried into itself by a continuation around AM*[D]
in the sense opposite to the sense that carries M+ into
itself. Since T(D) vanishes on the unphysical side of
MF[D], the function R(D) constitutes an explicit
expression for the continuation of M+ around M*[D]
in the minus-ie sense, and (1.1) displays T(D) as the
discontinuity of M+ around AGY[D].

In this first article, a bubble-diagram notation is
set up that facilitates manipulations of the unitarity
equations. Various results needed from earlier work'?
concerning the analytic structure of bubble-diagram
functions are summarized, and a general theorem
fundamental to our approach is proved. The method
is then exhibited for the special case of 3 — 3 reactions
below the four-particle threshold, and we obtain the
discontinuity formulas for every physical-region
singularity. The results for the 3 -2 and 23

13 H. P. Stapp, J. Math. Phys. 9, 1548 (1968).
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reactions can be obtained from these formulas by
regarding an appropriate pair of external lines as a
single line.

The results in the 3 — 3 case are easily summarized.
All the positive-o Landau surfaces below the four-
particle threshold are contained in the surfaces
corresponding to the set of diagrams shown in Fig. 1
together with those obtained from these diagrams by
the procedure explained in the caption. (The other
possible Landau diagrams, some of which are shown
in Fig. 2, give no additional surfaces and hence can
be ignored.) The discontinuity of M+ around the
Landau surface M+[D] for any one of these diagrams
D is expressed as an integral over a product of a set of
functions consisting of one physical scattering ampli-
tude (the connected part of the S matrix, which is
diagrammatically represented by a plus bubble) for
each vertex V, of D and one function F,,, for each
pair of vertices (V,, V,,). If there is no elementary
line segment L; directly connecting V, to V,,, then
F,,, is unity. If exactly one L; directly connects V,
to V,,, then F,,, is 27d(p? — u?)6(p9). If two or three
lines L; directly connect V, to V,, then F,, is a
function defined in terms of physical scattering
amplitudes by a Fredholm integral equation. It is
formally the inverse S;* of the restriction S, of S to
the space associated with the set of lines « connecting
V,and V.

The rules giving the discontinuity can be expressed

Fic. 2. Various Lan-
daudiagrams correspond-
ing to Landau surfaces
contained in the Landau
surfaces of the diagrams
described in Fig. 1. A
diagram containing more
thanone2—3,3 —2,0or
3 — 3 vertex, such as one
of the above diagrams (a)
and (b), corresponds to a
Landau surface that is
confined to the surface
corresponding to one of
the diagrams (¢) of Fig.
1. The diagrams (c) and
(d) contain two “inde-
pendent parts” that are
diagrams described in
Fig. 1. The Landau
surfaces of the full dia-
grams are confined to the
intersections of the Lan-
dau surfaces correspond-
ing to their independent
parts. The Landau sur-
face corresponding to the
chain of two-particle clo-
sed loops (e) is confined
to the Landau surface
corresponding to the sin-
gle two-particle closed
loop in (e) of Fig. 1.

(a) i - (b)
(c) (d)
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in the diagrammatic form
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where the left-hand diagrams denote the part of a
Landau diagram D that connects V,, to V,,, with all
the lines not directly connecting ¥, to V,, suppressed.
The right-hand diagrams denote the corresponding
part of the bubble-diagram function that gives the
discontinuity across AGt[D], with the F box repre-
senting F,,, . Thus, for example, the discontinuity of
M+ across AF[D], where

(1.2)

4
2 3
is represented by
(+) : (+]
| v 7
T(D) = (1.9

2 6 *

But if the diagram has two-particle closed loops, as
does, for example,

o 2 6 10 \8 (1.5)

s 3 7 N’
then, according to (1.2), an F box is added for each of
these. Thus the discontinuity of M* around the

Landau surface corresponding to (1.5) is given by

We also obtain formulas for the discontinuities
across various classes of singularities. For example,
the discontinuity of M™* across the class of Landau
surfaces that correspond to all diagrams of the form

plus all diagrams that can be contracted to a diagram
of this class is given by
P P

i i
.

(1.7)

(1.8)
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Here the P, bar restricts the sets of particles repre-
sented by the lines it intersects to sets having a sum
of rest masses greater than a given mass M, . A similar
result is valid for all diagrams that can be contracted

to a diagram of the class

P

N

The results described above are derived strictly
from the physical-region unitarity equations. They
provide a complete solution of the problem of
physical-region discontinuities below the four-particle
threshold. If one also admits the so-called extended
unitarity equations, then it can be shown that the
functions F,,, convert the scattering functions upon
which they operate to their values on other sheets.

The present work deals only with the singularities
lying in the physical region. One ultimately wants to
have discontinuity formulas also for singularities lying
outside the physical region, but the evident initial
step is to establish the results first in the physical re-
gion, where the unitarity equations apply. On the basis
of earlier work,! it is assumed that the physical-
region singularities are confined to the union of the
positive-. Landau surfaces, and that the physical
continuation around these singularities follows the
so-called plus-ie rules. The existence of the unphysical
continuations via minus-ie rules is proved by using
Fredholm theory, apart from possible zeros of the
Fredholm denominator.

It is possible that the positive-« Landau surfaces
corresponding to two different Landau diagrams are
identical. Indeed, if two Landau diagrams are *“equiv-
alent,” then their Landau surfaces are certainly
identical. (Equivalent diagrams are diagrams having
the same set of vertices and the same set of masses
Hnm - The mass u,,,, is defined, in the positive-a case,
to be the sum of the rest masses of the set of particles
Vnm associated with the set of lines I',,,, that directly
connect vertex V, to vertex V,,.) It is assumed in the
present work that the positive-a Landau surfaces
corresponding to basic inequivalent diagrams are
nonidentical. The diagrams of Fig. 1 and those
obtained from them by the procedure of the caption are
all the 3 — 3 basic diagrams. (Generally, a basic dia-
gram is one such that the «’s are uniquely defined at
some point on the positive-« Landau surfaces. The dia-
grams shown in Fig, 2 are not basic.) This assumption
allows us to consider separately the discontinuities asso-
ciated with different sets of equivalent basic diagrams.

It is possible for a positive-o surface to coincide
with a Landau surface associated with «’s of mixed

(1.9)



374

sign.* A second assumption used in the present work
is that there is no cancellation between mixed-«
singularities and positive-« singularities. That is, it is
assumed that in the unitarity equations, and equations
arising from them, the singularities associated with
positive-a Landau surfaces cancel among themselves,
as do the singularities associated with the mixed-a
diagrams, even though these singularities may happen
to occur at the same point. This seems reasonable.
Since singularities in the physical region can occur
only on positive-a surfaces, it would be unnatural for
singularities associated with mixed-a surfaces to
contribute to the physical-region discontinuities, even
though a mixed-« surface might happen to coincide
with a positive-a surface. This assumption allows us
effectively to ignore the singularities associated with
the mixed-« surfaces.

The validity of the assumptions described in the
preceding two paragraphs really should be proved,
but this is not attempted here.

Note added in proof: After this work was submitted
we received reprints of three papers by M. J. Bloxham,
D. 1. Olive, and J. C. Polkinghorne containing some
similar results. They obtain the formula for the dis-
continuity around an arbitrary physical-region sin-
gularity corresponding to a “‘simple diagram,”” which
is a Landau diagram having at most one line connect-
ing any pair of vertices. Our results for singularities
corresponding to simple diagrams are special cases of
their general formula.

Our main focus is on singularities associated with
nonsimple diagrams. We have recently extended our
results to cover all diagrams, both simple and non-
simple. The general result is that the discontinuity is
obtained by replacing each vertex of the basic diagram
corresponding to the singularity by the corresponding
physical sheet scattering function, and replacing each
set of lines « running between a pair of vertices by the
inverse S;! of the restriction S, of § to the space
corresponding to the set «. [S;! is a generalization of
the F encountered above.]

Our procedure differs significantly from that of
Bloxham, Olive, and Polkinghorne. In the first place,
we deal mainly with strict identities that follow from
the cluster decompositions of S and S-! above, and
introduce analytic continuations only at the final
step. Secondly, we do not separate the singularity into
parts corresponding to various ‘“mechanisms,” and
thus avoid the complicated question of the inter-
ference between different mechanisms, which makes
the arguments of Bloxham, Olive, and Polkinghorne

14 D, Branson, Nuovo Cimento 44A, 1081 (1966).
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difficult even for the case of simple diagrams. Finally,
we accept, on the basis of macrocausality, that the
physical-region singularities are confined to positive-o
surfaces, whereas Bloxham, Olive, and Polkinghorne
derive this result. However, they accept the ie rules
for positive-a surfaces and assume certain similar
rules for nompositive-o surfaces. Whether these rules
can be justified without appealing to a causality
condition is not yet known.
2. BUBBLE DIAGRAMS AND LANDAU
DIAGRAMS

The basic quantities in this discussion are bubble-
diagram functions. These are functions of scattering
functions that can be represented by bubble diagrams.

A bubble diagram B is a collection of leftward-
directed line segments L; and signed circles called
bubbles. Each bubble has at least one line issuing
from it and at least one line terminating on it. The
bubbles are partially ordered by the requirement that
a bubble on which a line terminates stands left of the
bubble from which this line issues. A line of B that
issues from some bubble of B and also terminates on
some bubble of B is called an internal line of B. The
other lines of B are called external.

A circle with a plus sign inside represents the
connected part of the S matrix for the process obtained
by associating initial particles with lines that terminate
on the bubble and final particles with lines that issue
from the bubble. A circle with a minus sign inside
represents the complex conjugate of the connected
part of the S matrix for the transpose (initial < final)
of that process. That is, the leftward-directed lines
that terminate on a minus bubble are associated with
final particles, and the leftward-directed lines issuing
from the bubble are associated with initial particles.

Spin variables will be ignored.'® Then each line L, is
associated with a variable (p,, ¢;), where ¢, is an index
specifying a type of particle (electron, proton, posi-
tron, etc.), the mass of which is u; = u(t;),and p;isa
physical momentum-energy vector satisfying p? = u?
and p? > 0.

The bubble diagram B represents a corresponding
function MEB(K'; K"), which is just the product of the
functions represented by the bubbles of B, with the
understanding that there is a sum over repeated
indices (variables) of these functions. In particular,
for each internal line L; of B there is a sum over all
particle types ¢;, and for each value of ¢;, there is an
integration over all physical values of the corre-
sponding momentum vectors p;. Thus, each internal

15 The inclusion of spin is a trivial complication in the M-function
formalism. See H. P. Stapp, Phys. Rev. 125, 2139 (1962); “The
Analytic S-Matrix Framework™ in “The Trieste Lectures,” High
Energy Physics and Elementary Particles 1AEA, Vienna, 1965).
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line L; of a bubble diagram corresponds to a factor

4
3 [ G2 2matte} = Wil
where a covariant volume element has been chosen.
The integration is restricted so that topologically
equivalent contributions are counted only once, as is
discussed in Appendix A.

Occasionally we shall wish to restrict the sum over
t; associated with internal lines to a sum over particles
having a given rest mass. Then the line L; will be
labeled by an integer, which is regarded as specifying a
particular value of the rest mass.

The argument (K’; K") of ME(K’; K") is the set of
variables associated with the external lines of B. The
lines that issue from bubbles of B are associated in a
one-to-one fashion with the variables of the set
K = (p;, t;, -+, Py, t.), and the lines that termi-
nate on bubbles of B are associated in a one-to-one
fashion with the variables of theset K" = (py, #;, -+,
Pms tm). These two sets of lines are also called the
outgoing and incoming lines of B, respectively.

Bose statistics is assumed throughout. Then the
cluster decomposition of the S matrix is expressed by
the equation?$

S(K'; K= 3

BeB,' (K%K")
Here B{(K’'; K") is the set consisting of all bubble
diagrams that have only plus bubbles, have no
internal lines, and have external lines specified by
(K'; K”). That is, the sum is over all different ways of
connecting the specified set of external lines to columns
of plus bubbles. Only topologically different diagrams
are regarded as different; reorderings of lines on a
given bubble, or reorderings of the bubbles do not
give additional terms (see Appendix A).

The function S(K’; K”) is represented by a box with
a plus sign inside. A box with a minus sign inside
represents the complex conjugate for the transpose of
the process. Thus an example of (2.2) is the equation

(=7 - ECR - S

= *Z%* Z%AM)

where the sums are over all topologically different
ways of connecting the specified set of external lines
to bubbles having the indicated numbers of incoming
and outgoing lines. Some bubble diagrams always
vanish by virtue of conservation laws and mass
constraints, and these have been omitted. For example,

(2.1)

MBK'; K.  (22)

16 See Ref. 12 for a discussion of the necessary phase factors in
the Fermi case.
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each nontrivial bubble must connect to at least two
incoming and two outgoing lines by virtue of the
stability conditions on the physical masses. Trivial
bubbles are bubbles from which just one line issues
and upon which just one line terminates. The function
corresponding to a trivial bubble is defined to be the
inverse of (2.1),

(2m)*8%(p, — PL)O(t, — 1,
2m8(p% — p2)O(p°

where d(a — b) = 4,, for discrete indices. Since (2.4)
holds for all trivial bubbles, the signs in these bubbles
can be omitted. Often the trivial bubbles themselves
are omitted.

The connected part of the S matrix is denoted by

! |
2 2

ﬁ = M+(KI; K,/)E M+"m )
n m

More generally, the function represented by a bubble
with the symbol ¢ inside is denoted by M?(K’; K") =
M: ..

Unitarity is written in box notation as

T - (k-1

The external lines appropriate to the process in
question are represented by shaded strips. There is a
sum over all possible numbers of lines crossing the
interface of the rectangles. Sometimes these lines are
indicated by writing the left side of Eq. (2.6) as

e - e

where the shaded strip between the boxes represents
the sum over all possible numbers of lines. The right
side of (2.6) is zero unless m is equal to », in which
case it is given by

8(K': K"y = 8(K"; K')
=2 1:[1 8P}, tis Py 1),

where the « are the n! permutations on n objects. The
last term in (2.3) is the bubble-diagram representation
of I for the case n = 4.

We often need to subtract from the S matrix the
identity, the connected part of the § matrix, or both.
The remainders are denoted by special symbols:

= (p;, ty; Ps» t5), (2.4)

(2.5)

(2.6)

2.7

(2.8)

Ay -1 % -di, 29
M’@'@, (2.10)

(2.11)
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where a common label inside the boxes and bubbles of
each equation has been suppressed.

It was shown in Ref. 13 that all singularities of
bubble-diagram functions are associated with Landau
diagrams.}” A Landau diagram D is a set of directed
line segments L; and a set of vertices V,,. Each vertex
contains end points of three or more lines L;, and no
vertex contains both end points of any one line.
Denoting the leading and trailing end points of the
line segment L, by the symbols L} and L7, respectively,
one can characterize the diagram D by the set of
numbers ¢;, defined by

€. =1

in
-1

if LY <V,
if Ly <V,

€in =

or
€, = 0 otherwise.

Each line L, of D is associated with a particle of type
t; and mass u, . If particles of type ¢, carry a; units of an
additively conserved quantum number “g,” then the
conditions

Sae,=0 (alin) (2.12)
i
are required of D.

The lines L; of D are characterized as being incom-
ing, outgoing, or internal according to the following
rules:

L; is incoming if ¢;,, > 0 for all n,
L, is outgoing if €, < 0 for all n,
L, is internal otherwise.

The incoming and outgoing lines of D are called
external lines of D. A line that is both incoming and
outgoing is called an unscattered line.

A connected Landau diagram is an. arcwise-connec-
ted Landau diagram. A trivia/ Landau diagram is a
connected Landau diagram with no internal lines.18

For each Landau diagram D there is corresponding-

Landau surface AG[D]. The surface AG[D] is the set of
variables (p;, ;) associated with the external lines of
D via associations

L (p;, t;, o) (2.13)
that satisfy the (loop) equations
zj:“ipjn:if =0 (allf), (2.14)
the mass constraints
pi=u4; (all)), (2.15)

and the conservation laws (2.12). A particular case of

17 A similar result was obtained by J. C. Polkinghorne, Nuovo
Cimento 25, 901 (1962).

18 In Ref. 13, trivial Landau diagrams were not included among
the set of Landau diagrams.
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(2.12) is the momentum-energy conservation law

D P =0 (alln). (2.16)
7

In Eq. (2.14), n,, is the algebraic number of times the
Feynman loop f passes along line L; in the positive
sense, and the «; associated with each internal line L;
is a nonzero number. The «; associated with the
external L; play no role, and can be set equal to zero.
Each p; is a real energy-momentum vector with
Py > 0. The part of A [D] that can be realized with all
o’s positive is denoted by AF[D].

A connection between Landau diagrams and
bubble diagrams is set up using the following terminol-
ogy. A Landau diagram D corresponding to a bubble
b is a D with its external lines in one-to-one corre-
spondence with the lines of b. The incoming lines of D
are to correspond to the lines terminating on b, and
the outgoing lines of D are to correspond to the lines
issuing from b. The internal lines of a D corresponding
to a bubble b will be said to lie inside b.

A D' < B is a Landau diagram D’ that can be
constructed by replacing each nontrivial bubble b of
B by a corresponding connected diagram D?, which
might be simply a trivial point vertex V% This D? is
required to be such that AG+[D?] is nonempty. Lines
containing only trivial bubbles are replaced by lines
containing no vertices.

A contraction D > D' of a Landau diagram D’
is a Landau diagram D that can be obtained by
shrinking to points certain of the internal lines L; of
D', and then removing all those lines L; of the resulting
diagram for which L} and Lj coincide. The diagram
D' is considered a trivial contraction of itself.

A D > < Bis a D such that for some D" < B, D
isa D = D’. The phrase B supports D means that D
isa D = < B. Thus, for example, the bubble diagram
B of (1.4) supports the Landau diagram D of (1.3).
This terminology is used in the next section to describe
the locations of the singularities of bubble-diagram
functions.

3. LANDAU SINGULARITIES, STRUCTURE
THEOREMS FOR BUBBLE DIAGRAMS, AND
THE ie RULE

In this section, we summarize some pertinent results
obtained earlier regarding the location and nature of
singularities of bubble-diagram functions.

According to the First Structure Theorem of Ref.
13, the singularities of MPB(K’; K") [divided by
(2m** (. p; — X p)] for any connected B are
confined to the closure of the union over nontrivial
D D < B of the Landau surfaces M[D].17
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(a)

Fic. 3. Figure (a) shows a diagram D, and Fig. (b) shows a
corresponding D with all o’s positive. In diagram (b), positive-
energy vectors point left. The condition that all «’s be positive,
together with the energy-conservation law, ensures that the diagram
D has the “physical” ordering, with energy flowing into the right-
most vertex ¥; and out of the left-most vertex ¥, . If the signs of the
o’s are all reversed, then the relative positions of the vertices of the

new D are obtained by reflecting diagram (b) through the origin 0.

{b)

A concrete representation for the surface M[D] is
now described.®

The geometric significance of the loop equations
is that the set of momentum-—energy vectors

(3.1)

fit together to form a momentum-energy space
diagram D that is topologically equivalent to the
diagram D. That is, the directed internal line segment
L; of D leading from a vertex m to a vertex n (i.e.,
im = —1, €;, = 1) is mapped to the four-vector

A;=ap,

€ =

A =w,— w0, =€,
r

(3.2)

of D, where w, is the four-vector from some arbitrary
origin to the vertex ¥, of D. The allowed values of the
w,, are those values such that each vector

(wn - wm)ejn |€J'm| = Pi€n |Ejm|

is positive timelike, negative timelike, or zero, ac-
cording to whether aye,, [€;,| is positive, negative, or
zero. This is just the requirement that p; be positive
timelike. A typical diagram D is shown in Fig. 3.

Each diagram D corresponds to exactly one point
on A[D], and each point of AL[D] corresponds to at
least one diagram D. The correspondence is given by
the mapping function

w w

()= ——"u.., (3.3)

m#En @, — 0]
where

Hom = z:uj leinefma'jl/aj (34)
J

and where the denominator is the Lorentz length
wn| = (0, — 0) (@, — 0,)} (3.5

|wn -

19 An independent derivation of this representation was given by

A. A. Logunov, I. T. Todorov, and N. A. Chernikov in the Proceed-

ings of the 1962 International Conference on High Energy Physics at

CERN (CERN, Geneva, 1962), p. 695; and Nucl. Phys. 50, 273
(1964).
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This length is necessarily positive for u,,, # 0, since
w, — ,, is timelike in this case. The terms where the
Unm = 0 do not contribute to (3.3).

The vector g, occurring in (3.3) is the total outgoing
momentum at vertex ¥,

qdn = — Z'ijjm
exy

where the sum over j runs over the j corresponding to
external lines of D. The Landau surface A[D] depends
on the external p, only through these combinations g, .
If no external lines are incident on vertex V,,, then g,
is required to vanish. If exactly one external line is
incident on ¥, then g, is required to satisfy the
corresponding mass constraint.

Equation (3.3) is obtained by first using the conserva-
tion law (2.16) to convert (3.6) to a sum over internal
lines of D and then using (3.1) and (3.2):

A,
94, = zpiein = Z -—zein

(3.6)

int int? O&;
= z €in z eimwm/‘xi
int¢ m
= - z z eineim(wn - wm)/“i
inti m#n
= z Z |€in€im| (wn - wm)/aia (37)
inti m#n

where we have observed that for a given internal i
only two values of m give a nonzero e,,, and that
these two ¢, have opposite signs. From (3.1) and
(3.2), one obtains

lo| e

=1, (3.8)
|wn - wm'
which combines with (3.7) to give (3.3):
w, — 0 4
9n, = E Z | € m€inl (—_—M)‘u
m#n int i lw, — @yl %
= 3 S o] 2T (3

m#En i |wn —_ wm| oy '

A point g(w) of AM[D] such that the first-order
variations dg = (dg/0w)dw generate the tangent space
to M[D] at g(w) is called a simple point q(w) of
M[D]. If A[D] is considered as a surface in g = {g,,}
space, then the tangent space to M[D] at a simple
point g(w) of AC[D] lies in the linear manifold defined
by

q-o=q¢g(w) o, (3.10)
where

g 0=34q, w,=3 ko, = oq o). (3.11)
n n.p

This follows from the fact that, at o’ = w,
do[g(w"), w}{dw’ = 0. (3.12)
Equation (3.12) is readily verified by substituting the
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right side of (3.3) into (3.11) and taking the partial
derivative with respect to a component w,, of '.
The vector w is, in this sense, a normal vector to
A[D] at a simple point g(w) of A[D].

The mapping g(w) is not one-to-one. All values of w
that are related by changes of the origin or by rescal-
ings of the «, give the same g(w) and are called
equivalent. It is convenient to fix the origin by requir-
ing 3 w, = 0. Then w lies in the same manifold as g,
which is restricted by > ¢, = 0 due to momentum—
energy conservation. The scaling can be fixed up to a
single sign by requiring that

Z z Iwm - wnl |€in€im|
n>mi

As already mentioned, the first structure theorem
asserts that the singularities of M¥(K’; K") = MB(K)
for any connected B are confined to the closure of the
union over nontrivial D © < B of the Landau sur-
faces A[D]. Let this union be denoted by ME. A
simple point of MF is a point such that a complete
neighborhood of K in AP is generated by an arbi-
trarily small neighborhood of some unique (up to
equivalence) point w, for some unique nontrivial
D o < B. According to the second structure theorem
of Ref. 13 such a point cannot actually be a singularity
of MB(K) unless D can be realized by taking all
a;m; > 0, where ), is the sign of the bubble inside
which L, lies, or is zero in case L, does not lie inside
any bubble of B. That is, we can require the «; of lines
L, of D > < B that lie in plus (minus) bubbles to be
positive (negative), but the «; of lines of D > < B
that are also lines of the original bubble diagram B
are allowed to be either positive or negative.2

According to the third structure theorem of Ref. 13
the functions MZ(K) lying on the two sides of the
singularity surface at a simple point K of MF are
boundary values of a single function analytic near K
in the upper-half o(K; K) = o[g(K), w(K)] plane,
provided at least one line of the corresponding
D > < Blies inside some bubble b of B. The sign of
o is fixed through (3.1) and (3.2) by the requirement
a;n; > 0, which has force only if at least one line L;
of D lies inside some bubble b of B.

In accordance with the second structure theorem,
we may consider the signs of the «, to be restricted by
the condition a;7; > 0. Then the singularity at a
simple point of MP can be classified as either a
positive-o, negative-a, or mixed-« singularity, accord-
ing to whether the various «; corresponding [via (3.1)
and (3.2)] to the singularity are all positive, all
negative, or neither all positive nor all negative. Thus,

= Z le;p;l = 1.
int<

20 A similar result was obtained by P. V. Landshoff and D. I.
Olive in the Appendix of Ref. 6.
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if B consists of a single plus bubble, then all its
singularities are positive-a singularities, but if B
consists of a single minus bubble, then all of its
singularities are negative-o singularities. The positive-«
and negative-« singularity surfaces corresponding to a
diagram D both occupy the same position, M*[D],
but the sign of o(g, w) is opposite, and hence the two
continuations pass into opposite half-planes. A
continuation in accordance with the rules for going
around a positive-« singularity is called.a continuation
according to the plus-ie rule, whereas a continuation
in accordance with the rules for going around a
negative-« singularity is called a continuation accord-
ing to the minus-ie rule.

The function g(K) appearing in o(K; K) = ag(K);
w(K)] is the expression for the g, in terms of external
vectors given in (3.6). One can also write g as a function
of the internal vectors p; as in (3.7). This gives, again
via (3.2) and then (3.1),

ola(p), 0] = X 4.(p) - o,

= Zzempi t Wy,

nint{
= Z p;* Aw)
int ¢

= 2 ap; - p{w). (3.13)

inte
The vector p,(w) is a real positive-energy vector
satisfying p,(w)® = u?. Hence the minimum value of
psi* p{w), when the real vector p, is restricted by
p; =i and pg >0, is precisely uf = p;(w) - pi(w).
Thus if all the «; are positive, then we have

alg(p), @] 2 olg(pi(@)), ©]. (3.19
That is, the function a[g(p;), w] takes its minimum
value at p; = p,(w).

Equation (3.14) has several important consequences.
Consider any Landau diagram D. The ‘“physical
region” of D is the set of all points in the space of
external variables such that there is a set of real p,
associated with the internal lines of D for which the
mass constraints (2.15), the energy condition p? > 0,
and the conservation laws (2.16) are satisfied. Equa-
tion (3.14) says that for any o corresponding to a
point on AGH[D], the entire physical region of D,
considered as a region in g space, lies on the positive
side of the hyperplane o(g, w) = o[g(w), w], except
for the point of contact ¢ = g(w). This fact was first
noticed by Pham.!? It tells us in particular that the
points of A*[D] are necessarily on the boundary of
the physical region of D (a result that is not always
true on M[D] — MH[D]) and moreover that o(g, w)
increases (rather than decreases) as one moves from
outside the physical region to inside the physical
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region at the point g(w). It follows from this that the
continuation according to the plus-ie rule around any
positive-a singularity is such that it passes into the
upper half-plane in any variable z for which dq =
(9g/0z)6z moves the point ¢ from MF[D] into the
physical region of D when dz is real and positive.
That is, the requirement that do = dq - w be positive
for positive 6z implies that (dg/0z) - @ > 0, which
means that for Im 6z > 0 one has
6Imo = w-Imdg = w-(0g/6z) Im éz > 0.

Thus, the continuation according to the plus-ie rule
always goes into the upper half plane of a variable
that is increasing as one moves into the physical region.

The Landau diagram D < B obtained by replacing
each bubble b of B by a point vertex V2 is denoted by
DEB. The function M® is not generally continuable
past the singularity at AC[DP]. Indeed, the above
result shows that the function M% vanishes on one
side of AGt[DF] but not on the other side. These two
sides are called the unphysical and physical sides,
respectively. The function MP evidently has both
positive-« and negative-a singularities at AT[DE],
since the constraints a;n; > 0 allow for D with either
all «; positive or all negative, since all the 7, are zero.

4. DEVELOPMENT OF THE UNITARITY EQUA-
TION FOR THE 3 —» 3 SCATTERING
AMPLITUDE

Suppose the center-of-mass energy E of the initial
(or final) particles is below the four-particle threshold.
Then the connected part of the unitarity equation
(2.6) for the 3 — 3 amplitude can be written in the form

5 Gre + Sy sy 0. (4])
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The unmarked summation signs in (4.1) and in the
subsequent equations refer to the external lines
(incoming and outgoing). Those that are marked “i”
or “f” refer only to incoming or outgoing lines,
respectively. These sums are over all topologically
different ways of connecting the specified set of
external lines to the rest of the bubble diagram. For
example, the last term in (4.1) has nine contributions,
whereas the fifth term has three:

STE= - STEE

The external lines, reading from top to bottom,
represent fixed variables (p;, ¢,), but the internal lines
are subject to the summation convention of Sec. 2
unless it is restricted by explicitly labeling an internal
line by an integer. Thus, for instance, we have

= +_ 2 4+ coe + V)
o= == &
where the number 7 on an internal line restricts the

summation to particles of a fixed mass M, .
Postmultiplying (4.1) by

-LF -

T %s

and simplifying by means of two-particle unitarity,
T + XX =-TO o =-T0 6

we obtain

(4.2)

@.3)

44)

(4.5)

LE 2T 2o - 2=

(1 + TECE+ T2 )&= 22 )= 0.

[A detailed discussion of combinatorial questions is
given in Appendix A. Our rules are such that the
products of functions represented by diagrams such
as (4.1) and (4.4) are always represented simply as the
sum of the topologically distinct diagrams that can
be obtained by combining the diagrams in the natural
fashion. By product we mean, of course, matrix
product; there is an integration (2.1) over the internal
lines.]

(4.6)

Again using (4.5) we may write

Y +3 P = 1% - 1%
O
(TE - TSR ) S

“.7
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Application of (4.1) to the expression in the left
parentheses gives

%+ 3 -
OECE + TCE + $208) (%)
S TS I

There is an equation similar to (4.8) but with the
right plus bubble connected to the upper two lines.
Substituting that equation into the last two terms of
the right side of (4.8), we obtain

ﬂ@ﬁﬂﬁ* CHECE
TOCE T ) (T e )

2 e~ 2 e

P O + Z : (4.9)

Equation (4.9) can be iterated by substituting the
right-hand side of (4.9) into the last two terms of the

viom 8
33 s
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right-hand side of (4.9). Iterating n times, we end up

" e e - (@
O - 3 )
(e Tt s

% M’%E

. (4.10)

Substituting (4.10) into (4.6), we obtain for any
positive integer n

ML+ H"+ G+ C*"+ R =0,

4.11)
where

ne Oriwowe E_\E
H™ = z o-c-o 0t

6" )

o. ...
z o.o.o.o

(E*E&E*
L A R Ta s R

T P ),

W EOTEO=02=0=0D%=0' PIE

T R P
+___+E_i;+ TN o T W Wt

e i N e ).

(4.12)
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5. DERIVATION OF DISCONTINUITY
EQUATIONS

A. Discontinuities across Singularities Depending
on a Cross-Energy

Certain Landau diagrams D are such that every
continuous curve within D connecting any incoming
line to any outgoing line must pass through one and
the same vertex V (see Fig. 4). The Landau surfaces
corresponding to such diagrams can depend on the
total energy and on the various subenergies, but with
a suitable choice of variables they are independent of
all cross-energy invariants.?! Landau surfaces AG[D]
corresponding to diagrams D of this type are called
surfaces of Type A. Singularities not lying on surfaces
of Type A are called cross-energy singularities. The
discontinuity equations for all cross-energy singular-
ities of M}, can be obtained directly from (4.11) and
the structure theorems.

The singularities of the various terms in (4.11)
must cancel. Since M}, is regular at points not lying
on A*, the singularities of H" 4+ G* + C" + R"
corresponding to «’s of mixed sign (mixed-« singular-
ities) must cancel among themselves at these points.
As discussed in the introduction, we shall assume that
this cancellation among mixed-« singularities also
holds true at points of A*. We also assume that the
surfaces MT[D] corresponding to inequivalent basic
diagrams D are nonidentical and consider points
lying on a single one of these surfaces.

By virtue of the first assumption, we can, in deriving
the discontinuities of Mj,, ignore the mixed-«
singularities of the various terms in (4.11). According
to the first structure theorem, the singularities of M?
are confined to the union over A:[D] of the nontrivial
D > < B. Consider first G*. (We somefimes use the
same symbol to denote both the bubble diagram and
its function.) If any one of the diagonal lines of G»
is contracted to give D, then AC[D] is of Type A.
This is because the only allowed diagrams in the
2 — 2 bubbles must have, as a consequence of the
stability and the positive- (or negative-) « require-
ments, both incoming lines terminating on a common
vertex and both outgoing lines issuing from a common
vertex. On the other hand, if any of the horizontal
lines of G™ is contracted, then the two diagonal lines

21 A subenergy is the energy of a proper subset of initial or final
particles in its own center-of-mass frame. A cross-energy invariant
is the square of the sum of the momentum-—energy vectors of a set
of particles that contains both initial and final particles. The eight
invariants needed to describe a 3 — 3 reaction are chosen to include
two initial subenergies, two final subenergies, and the total center-
of-mass energy E of the reaction. Then all six subenergies are
functions only of these five invariants and are therefore independent
of the remaining three variables, which are cross-energy invariants.

The choice of the invariants is discussed by V. E. Asribekov, Zh.
Eksp. Teor. Fiz. 42, 565 (1962) [Soviet Phys.—JETP 15, 394 (1962)].
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FiG. 4. An example of a Landau dia-
gram containing a vertex ¥ through which
must pass every path connecting any initial
line to any final line. A path connecting
lines is required to connect internal points
of these lines.

lying above or below this horizontal line must also be
contracted, as a consequence of the Landau loop
equations and the positive- (or negative-) « require-
ment. Thus, all the positive- (or negative-) a cross-
energy singularities of G correspond to diagrams D
in which none of the (explicitly appearing) lines of
G™ are contracted. But for sufficiently large n, the
MT[D] for such a D does not enter the region below
the four-particle threshold. (This was proved in
Ref. 22 by proving that for sufficiently large n, the
classical point-particle multiscattering process pictured
by D is dynamically impossible.)

A similar argument shows that H" can have no
positive- (or negative-) a cross-energy singularities,
provided # is taken sufficiently large.

The diagrams D = < B for M® € R" have, for the
Landau diagrams D? corresponding to the 3 — 3
or the 3 — 2 minus bubbles, either a point vertex ¥
or a nontrivial diagram with internal lines. In the
former case, A[D] is of type A. In the latter case, the
fact that D contains some line that lies inside a minus
bubble means that the «, of at least one line of D must
be negative. Since all «; must have the same sign, this
universal sign must be negative. Thus, the o of the
third structure theorem that defines the continuation
past this singularity of R” is the negative of the o
associated with the same singularity of M;. That is,
the continuation around this singularity of R” follows
the minus-ie rule.

We may now derive the discontinuity of M.}
across the singularity corresponding to the Landau
surface MT[D] associated with any diagram D that
may be formed by contracting to points the bubbles
of a bubble diagram Bj having labeled lines that
represents a contribution to C*. For example, the

diagram
L)

z 3
corresponds to the contribution to C,

H—2—ay

B
M= VN 4 N (5.1b)
VA VAN

2 6

According to the remarks at the end of Sec. 3, the
term 7(D) = MP» is a threshold term present in

22 . P. Stapp, J. Math. Phys. 8, 1606 (1967).
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(4.11) for points on the physical side of M+[D], but
absent on the unphysical side. If one takes Eq. (4.11)
on the unphysical side and continues around the
singularity in accordance with the minus-ie rule,
then R”™ is continued into the same function R” that
occurs on the physical side of the MH[D], by virtue
of the third structure theorem. However, the function
M3, is continued to its value underneath the cut (or
underneath the pole). This continuation is denoted by
M7} (D). The remaining terms are not singular at the
point in question and are therefore continued into the
same functions that occur on the physical side of
MF[D]. Thus, the difference between the continuation
of (4.11) from the unphysical side and (4.11) evaluated
on the physical side of M*[D] gives simply

ApM3i; = Mj; — Mjy(DY) = MB> = T(D). (5.2)

That is, the discontinuity around the singularity
surface MH[D] is just MPp,

The essential point in this method is that the
expansion of M}, be such that all positive-x contri-
butions to the singularity in question that are not in
M}, itself are contained in a “threshold term,” which
is a term that contributes on only one side of the
singularity surface in question. This is the key point
of this paper.

The surfaces M*[D] considered above are not the
only positive-« Landau surfaces that are not of Type
A. Other D’s can be obtained by inserting some
internal structure in some of the plus bubbles of a
bubble diagram corresponding to a term of C”. The
stability and positive-z requirements, together with
the total-energy limitation, allow the insertions only
of chains of the form

b
o¢ = XOOOOKX

where the Landau equations require that the sum of
the masses of each link of the chain be the same.
Since the Landau surfaces corresponding to such a
chain do not depend on the number » > 1 of closed
loops, we can, without loss of generality, limit the
chains to a single closed loop. Then, we obtain, for
instance, the Landau diagram

R

In order to obtain the discontinuity equation for the
cut starting at M+ [D,], and also for later use, we now
cast the unitarity equation into a form where only the
scattering amplitude itself and a threshold term have a
positive-« singularity corresponding to a given normal

(5.3)

(5.4)
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threshold. Let us introduce the decomposition

A @

- o .,
where the P; (or Q,) bar restricts each of the sets of
particles corresponding to the lines intersected by the
bar to a set having a sum of rest masses greater than

or equal to (or smaller than) a given mass M, . Using
(2.9) and (5.5), we can write (2.6) in the form

:_-. (5.6)

Instead of the bars, we often use the more compact
notation exhibited in

PQ 0
I' |' |' , P00

Denoting the center-of-mass energy of the incoming
particles by E, we see that only the second term on the
right-hand side of (5.6) contributes below E = M,.
We define the / box by the equation?®

e+ TR 0

for both E < M, and E > M;. (In this equation, and
those that follow, E is assumed to be below the four-
particle threshold.) An i box is related to i bubbles in
the same way as a plus box is related to plus bubbles.
Thus, we have

(5.5)

5.7

(5.8)

I} = o (5.92)
TLF = O 2%, (5.9b)
IE = <=, (5.9¢)
LF = Lx, (5.9d)
TF = LE+ZT-3F. (5.9€)

The functions represented by the i bubbles are
denoted by Mi(K’; K”). These functions depend on
the mass M, associated with Q,. The 2 — 2 i bubble in
(5.9e) is defined by the required vanishing of the
various disconnected parts of (5.8). The disconnected

part equation
Q.

II+1]: +II1D:=°

(5.10)

28 Cf. J. Gunson, Ref. 2, and D. I. Olive, Nuovo Cimento 29,
326 (1963).
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is equivalent to

q’
i

HONRSNONESNORRO L

if the mass M/ associated with the Q; of (5.11) is
related to the mass M, associated with the Q, of (5.10)
by M] = M, — u;, where y, is the rest mass of the
spectator particle in (5.10).

It is shown in Appendix B that (5.8) can be solved
for M*K'; K") by using Fredholm theory and that
Mi(K’'; K") has a minus-ie continuation past the
normal threshold singularity at E = M,. This result
follows formally, directly from the iterative solution,

On = -xO8 + (W) 6D

where the subscript C indicates the connected part
of the expression in parentheses. For example, in the
2 — 2 case (5.12) becomes

(5.13)

Let B be any term on the right-hand side of (5.13) and
consider the normal threshold corresponding to the
Landau diagram D

(5.11)

XX,

(5.14)
2

where M; = p; + u,. Because of the Q, projections,
any D © < B must have negative «’s associated with
its lines. Then the third structure theorem prescribes
a minus-ie continuation past the singularity of M%
at MH[D]. Thus each term on the right-hand side of
(5.13) must follow a minus-ie rule past this normal
threshold.

Similarly, it follows from (5.12) that M}, has a
minus-fe continuation past the normal thresholds
corresponding to the diagrams

where we put M; equal to y; + p, + uz or py + ps,
respectively. These results can be made rigorous by
using Fredholm theory in place of (5.12), as is shown
in Appendix B.

From (5.6) and (5.8) we obtain?

24 This argument is taken from Ref. 3.

(5.15)
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and also
LTy« 0K). 617
Comparing (5.16) and (5.17), we obtain
SRR - )
- -0
- CReCR 0 61
In Appendix C, we show that
.(ﬁ'jl = ;(fr_fp (5.19)

Using (5.19), one also obtains (5.18) with the i box
and plus box interchanged on the left-hand side, and

hence also
P P
-

It follows from (5.11) and (5.19), and from (5.18),
(5.20), and (2.9), that

e

(5.20)

(5.21)
and that
R R
2O OLE0:20220:20:
R R
F0::01::0 SN ES

In (5.22) only the first term on the left-hand side and
the threshold term on the right-hand side have a
positive-a singularity corresponding to the diagram
(5.14) where M; = u, + u,. This shows that M, is
the continuation of M, below this singularity and
that the discontinuity is the right side of (5.22).
Returning now to the problem of the discontinuity
around Mt[D,], where D, is defined in (5.4), we use
(5.22) to expand the relevant term T of C* as follows:

)
- 335 =~ 38
oo

q 3

Setting M, equal to u, + u,, we see that the first term
of this expansion has a minus-ie continuation past the
surface AM+[D,] for just the same reason that R" does.

P

- P o

4
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The second term has its threshold at A+[D,]. There-
fore, we obtain in the same way as before the dis-
continuity equation

Ap M, = T(Dy), (5.24)
where
i R
OmmO, & 1-i T
= 3 S —_
R A VG e U
(5.25)

The method given above can be generalized. Any
set of inner plus bubbles (that is, plus bubbles not
standing at the extreme right or the extreme left of the
bubble diagram) of any bubble diagram T corre-
sponding to a term T of C* can be replaced by closed
loops, while the remaining plus bubbles are contracted
to points. The corresponding discontinuity of Mj,
is then given by T with every plus bubble correspond-
ing to a two-particle closed loop replaced by

i PR
201:ORE 0! O
with the index i referring to the sum of the rest masses
of the two particles in the two-particle closed loop.

(5.26)

B. Discontinuity Equation for Normal Singularities
in a Subenergy

To derive the discontinuity of M, across MF[D,),
where

2 (5.27)

we first write the first and fifth term of (4.1) in the
form

O z:@f Tx - T

Substituting (5.28) into (4.1), postmultiplying the
result by

Qj

— ., T

, (5.29)
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and using (5.21), we obtain

(5.30)

where

LEOCREO=02+O=0:
PREOR=5) 02 (e
++@z& 2O

(5.31)

Again setting M, equal to u;, 4+ 4, we see? that
the only terms of (5.30) that can support D, with all
«’s positive are the first and the second. Thus we
obtain?

P; PP
Aon;:m = =T (D;).
(5.32)
C. Discontinuity Equation for the Ice-Cream-Cone
Diagram

To find the discontinuity of Mj; across M*[Ds]
where

5.33
0, = , (5.33)
we first subtract (4.1) from (5.30), and obtain
of
TF= = - TR vry O

where

“e(CE - CECE - =

+3 =CE-S ) (2
- L™,

25 Details are given in Appendix E.
26 This is essentially the result of Ref. 7,

(5.35)
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The diagram R, cannot support D, with all «’s
positive.?® Substituting (5.34) into the second term of
(4.6) we see? that the only terms of (4.6) that can
support Dy with all o’s positive are M, and — T(D,),
where

P
= (iXa (5.36)
T (D)= « Y HFXE
3
is a threshold term. Thus we obtain?’
Ap, M3 = T(Dy). (5.37)

D. Discontinuity Equation for the Extended
Ice-Cream-Cone Diagram

Consider the Landau diagram

Substituting (5.34) into the second term of (4.11)
we see? that the only terms of (4.11) that can support
D, with all o’s positive are M}, and —T(D,), where

. "
(5.39)
is a threshold term. It therefore follows that
Ap Mg = T(D,). (5.40)

Similarly, by combining (4.8) and (4.6), or (4.8) and
(4.11), and then substituting (5.34), we find that the
discontinuity of M, corresponding to the diagram

o { eee m
5 9 L 2]
]
3 7 LL L]
is given by

P o I
5 9 5
‘-(M.O(, J_’(:E
00 9.. e €+4m 3

(5.42)

P
_ = @ + ,‘;:2;0..;:‘

37 This is essentially the result of Ref. 8.

385

Any set of simple inner vertices (defined in the
caption of Fig. 1) of any of the diagrams (5.38) or
(5.41) can be replaced by a corresponding set of two-
particle closed loops. Then the corresponding dis-
continuity of MF, is given by (5.39) or (5.42) with
every plus bubble corresponding to a two-particle
closed loop replaced by the expression (5.26).

E. Discontinuity Equation for Normal Singular-
ities in the Total Energy

The problem is to find the discontinuity of A
around M*[D;] and MH[D,], where

Dy- 9@@"« os=>Q< . (5.43)

The —i (or F) box was defined in (5.18). By virtue of
(2.9) this definition is equivalent to

(5.44)

S oy

The connected part of the left side of (5.44) is denoted
by

(5.45)

(5.46)

PP
g 50

0=0 RLi0 B

Using (5.20) we can write the connected part of
(5.18) in the form

- (st

(5.47)
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which gives

+ (W]

(5.48)

where the subscript C indicates the connected part.
Substituting (5.47) and (5.48) into (5.46) we obtain

?
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where

(5.50)

For the special case of three ingoing and three
outgoing particles, the terms on the right-hand side

(5.49) of (5.49) are given by
PP Pi P PR
i —
(+E(+) = - { tjit—_bz— « O+ )=

XY -
HCE

and

LE-Ix-2 EGE@E:
+zm "’Z:@: +ZW

(5.52)

_,,E# )

Equation (5.22) is used to obtain the fifth term of
(5.52).

The only terms in (5.49) that can support D; or Dg
with all o’s positive are M, and the first term on the

(5.51)

hoP
ADs M3, = {;} iy jl& (5.53)
and
R R
MO ==E==¢ ’ (.54

where we set M, equal to u; + gy + yg in (5.53) and
equal to pu4 + us in (5.54) and we assume that u, +

Mo+ ps # pg + ps. For py + ps + us = py + us,
the discontinuity across Mt[D;] = MT[Dg] is given by

I:,i i

(EE +£)

P

P i fi
P, P,
+ +) -i

(5.55)
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F. Discontinuity Equation for the 3 — 2 and
2 — 3 Amplitudes
The 3 — 2 and 2 — 3 amplitudes have no physical-
region singularities depending on a cross-energy
invariant. The discontinuities of these amplitudes
across their singularities are given by formulas
completely analogous to those obtained for the 3 — 3
amplitude except for the change in the external lines.

G. Equivalent Diagrams

The Landau surfaces corresponding to equivalent
(but not'identical) diagrams coincide. The discontinu-
ity formulas given by the rules (1.2) of the Intro-
duction have partially taken this into account, since a
summation over all particles of the same mass M,
is implied for a line labeled with the number r.
However, the sum of the rest masses M; + M, of the
particles in a two-particle closed loop may be equal to
the sum of the rest masses M, + M, + M, of the
particles in a three-particle closed loop; or it may be
equal to the sum of the rest masses M, + M, with
M7 # M, of another set of particles corresponding to
the two-particle loop. The rules (1.2) do not cover
such cases. In the derivations given in this section,
the possibility of equivalent diagrams is not excluded,
and the results cover these cases also. They give,
instead of (1.2), the more general rule

1
PR
| =), 6%

IR

These rules are equivalent to those of (1.2), if there are
no equivalent diagrams of the type just mentioned and
provided the M, corresponding to the bar in (5.56) is
set equal to the appropriate sum of the masses oc-
curring in (1.2).

It is understood here, as it is in the discontinuity
formulas derived in this section, that the bubble-
diagram functions on the right-hand side are evaluated
just above their threshold. We shall see in the next
section that if this restriction is relaxed, then the rule
(5.56) can, in some cases, give the discontinuity
across a whole set of cuts.

H. Surfaces of Lower Dimension

The third structure theorem applies only to simple
points. Thus it would not apply, for example, to D,
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of (5.4) if the masses satisfy wuy + us = g + g,
where 6 is the upper left-hand line; for then M*(Dy)
would lie in MT(D,) [see (5.33)]. Thus it would contain
no simple points and would in fact be of lower dimen-
sion. It is the discontinuity around the imbedding
codimension-one surface M*“(D;) that would be
calculated. Other threshold singularities for internal
bubbles are treated analogously.

6. DISCONTINUITY OF THE SCATTERING
AMPLITUDE AROUND SEVERAL CUTS
The method used in Sec. 5 to derive the disconti-
nuity of M}, across a single Landau surface can be
generalized to give the discontinuity across several
Landau surfaces.?
Consider the set of Landau diagrams

R
D7=¢,

where the unlabeled internal lines correspond to all
possible types of particles that are compatible with the
conservation and mass constraints and which satisfy
the requirement that the sum of the masses of the
particles corresponding to the lines cut by the P;
bar be greater than a given mass M;. The only terms
of (5.30) that can support a Landau diagram of the
set D, with all «, positive are the first and the second.2®
On the unphysical side of all the Landau surfaces
MH[D,], Eq. (5.30) is M, + R, = 0. If this equation
is continued to a point that lies on the physical side of
all the Landau surfaces M+ [D;] in such a way that R,
is continued into itself, then M.} is continued around
MF[D;] according to a minus-ie rule and into a
function denoted by M 3(D7). Subtracting the contin-
ued equation from (5.30), we find that the discontinu-
ity M}, — MJ(D7) is again given by the right-hand
side of (5.32).

A similar argument, based on the formulas of sub-
section SE shows that the discontinuity of Mz across
the set of Landau surfaces corresponding to the
diagrams

is given by

6.1

P, P

The same procedure also works for nonnormal
singularities. Consider, for instance, the set of Landau

(6.3)

28 This topic will be discussed in more detail in later work.
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diagrams
Pi
M oY
D 9 - / 2 \ .

The discontinuity M, — M, (Dy) across the set of all
cuts that begin at the Landau surfaces M*[D,] is
given by the function T(D,) defined in (5.25), provided
we remain in the region where MJ(D;) has no
mixed-« singularities corresponding to D, or to the
contractions of Dy . This restriction is imposed because
the third structure theorem cannot be used to continue
the right-hand side of M} (Dy) = M{, — T(D,) into
itself around such mixed-a singularities.

Finally, let us examine the total discontinuity of
M}, across all normal thresholds in the total energy or
in a subenergy. Consider the set of diagrams

e { XK . XX,

where the unlabeled internal lines correspond to all
possible types of particles that are compatible with the
conservation and mass constraints. This set is com-
posed of the subsets

b e v

where we choose M; in such a way that E = M, is the
energy corresponding to the lowest normal threshold
lying within the physical region of M. (Thus, the
normal thresholds corresponding to the diagrams Dj,
lie outside or on the boundary of the physical region
of Mf;.) We define

TMGHEE Q= ﬁc} NCE)

The argument which led from (5.46) to (5.49) also
works if we replace —i by a minus sign and omit the
P, bar in these formulas. Then, Eq. (5.49) becomes

¥ = LI=CE + FE,

(6.9)

(6.5)

and
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where

{RE=-(LE+ =+ -k
N ORI el v o |

(6.10)

On the unphysical side of the set of singularities
corresponding to Dy, we see that

My, (0= JRE,

where we have used (6.9). If this equation is continued
to a point which lies on the physical side of the
surfaces M*T[D,,] in such a way that the right-hand
side of the equation is continued into itself, then
M}(Djy) is continued below the cuts corresponding to
M*[Dy,) and into a function denoted by Mj(Dy,).*
Subtracting the continued equation from (6.9) we
obtain

Mis~ My (D) = LJ-(+F | 1

Equation (6.12) gives discontinuity of M across all
the Landau surfaces M*[D,,] provided M (D) can
be regarded as a continuation of Mg to some un-
physical sheet.

With a similar proviso, we find that the total
discontinuity across the singularities corresponding
to the diagram

is given by
+ +, - -
Mss‘Msa(Du)“m - @.(6-14)

Equations (6.12) and (6.14) can be regarded as just
definitions of MF(Dy) and M (D7), respectively.
The nontrivial aspect is the result that these functions
have minus-ie continuations around the normal
threshold M+[D},] and MF[Df,] = MT[D,], respec-
tively.

6.11)

(6.13)

APPENDIX A: COMBINATORICS
A. Cluster Decomposition of the S Matrix

For bosons, the cluster-decomposition property of
the § matrix is expressed by

M(K'; K”) = 2 M(K'; K") (Ala)
and ?
Ny

M K'; K") = H1 My(K3s; K3 (Alb)
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FiG. 5. Diagram representing a typical term
M, of the M function in (Ala).

The sum over p is a sum over all partitions of the set
of variables (K'; K”) into disjoint subsets. The set of
variables (K.,; K., is the sth subset of the pth
partition. The pth partition has altogether N, subsets,
and the first partition, p = 1, is the unique partition
with N, = 1 and K;, = K', K], = K".

The cluster decomposition is graphically represented
in terms of bubble diagrams. A bubble with a plus
sign inside represents the connected part, M (K, ; K ),
of the S matrix M(K,;K,). Then M(K'; K") is
represented by a sum of terms each of which is a
column of plus bubbles. (The set of bubbles includes
trivial bubbles, which are bubbles connected to just
one initial and one final line.) Counting is important.
There is precisely one term for each topologically
different way of connecting a column of plus bubbles to
the given set of external lines specified by (K'; K”).
The topological structure is determined completely
by specifying the grouping of the external lines into
subsets. The lines of each individual subset (K] ; K, )
of external lines are drawn as emerging from a single
bubble. Two diagrams that differ only in the ordering
of the bubbles in the column are not topologically
different. Similarly, two diagrams that differ only in
the ordering of the lines emerging from any given
bubble are not topologically different. This latter
fact allows us to always draw the diagrams so that the
lines emerging from any given bubble never cross.
However, lines emerging from different bubbles may
cross. A typical term thus has a structure like that
shown in Fig. 5.

B. Counting the Intermediate States

The unitarity equation is
S M(K’; KIMY(K; K"y = 8(K'; K").  (A2)
K

Here K= (p;,t,pssts, ", pn,t,) is a set of
variables V; = (p;, ¢;). The sum over K includes a sum
over all n. For each n, each of the n indices ¢; is summed
over all possible values, and for each value of
there is an integration over all values of p, satisfying
pi = u? = p?(t)). The states are labeled by unordered
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sets K. That is, states labeled by sets K that differ only
in the order of the variables of K are not counted as
different. Thus, one must either restrict the range of
integration by some normal ordering convention, as
in Ref. 15, or divide by n!. Let us temporarily adopt
the latter method, so that there is no restriction on the
range of integration. Then the summation on the
left-hand side (A2) can be written in the explicit form

1 1 T T 7

s-3155...3

=1l g=1t=1 =1

d*p
X f (277)14 276(p1)d(pl — ud)

x P2 270(pR)0(p3 — u3) - - -
(2m)*

x LPe2mb(p00t — ). (A3

(277-)4 n n n’re
Here n is the number of lines in the intermediate state,
and 7 is the number of types of particles. The momen-
tum p; is associated with line j and also with the type
variable #; and can therefore be written as p;(t;).

When we transcribe unitarity (A2) into bubble
notation, we find that topologically indistinguishable
diagrams occur. That is, even though the individual
M functions are expressed as a sum of topologically
different diagrams, the topological product of these
diagrams contains diagrams that are not topologically
different. The topological structure of a contribution
to the product is specified by specifying first which
subsets of the set of outgoing variables K’ are grouped
together (i.e., are attached to a common bubble) and
which subsets of the set of incoming variables K" are
grouped together. (The various variables of K’ and K”
are always considered as distinct and identifiable. One
can, for instance, take all the p; in X' and K" to have
different fixed values.) The various groups of incoming
and outgoing variables can be labeled by indices i and
f, respectively. These indices i and f then label the
bubbles of the right and left columns of the product.
It is important to note that this labeling does not
refer to the position of the bubbles in the column but
rather to the sets of external lines connected to these
bubbles.

The number of lines connecting bubble i to bubble
is called N, . The topological structure is specified by
these numbers N, together with the specifications
of the subsets of incoming and outgoing lines labeled
by iand f.

Bubble diagrams of the same topological structure
give exactly the same bubble-diagram functions. Thus,
the product on the left of (A2) can be expressed in the
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form

F(K'; K") = 2 cgM*(K’; K"), (A4)

B

where the sum is over all the topologically different
bubble diagrams B contained in the topological product
of the two boxes. The coefficient ¢ for a diagram with
n internal lines is Ng/n!, where Ny is the number of
diagrams topologically equivalent to B in the topo-
logical product of the two boxes, and the factor 1/n!
comes from (A3). The bar on M7 indicates that,
contrary to the convention adopted in the main text
(see below), the regions of integration are not restric-
ted by any ordering convention, but are as given in
(A3), without the 1/n!. We show immediately that

Ng = n![TT (N (A5)
This result gives

Cp = I/H (N, (A6)

the product being over all pairs (f, {). As usual, one
takes 0! = 1.

To derive (AS) one first labels the intermediate
lines in accordance with their topological character:
Each line is labeled by a unique triple (f, i, m),
where fand i label the final and initial bubbles that the
line joins, and for any particular values of fand-i the
m in (f, i, m) is an index that runs from 1 to N, and
specifies the particular one of these N, lines. There
is also the index j that runs from 1 to », and identifies
the n variables of K = (p1, #1, Pas t3s " " * 5 Pus o)

For definiteness, one may specify that the ordering
of the lines of any box reading from top to bottom is
the same as the ordering of the associated variables
of the corresponding set K. Thus, j specifies the
geometric location of the intermediate line L,,
reading from top to bottom of the box. The index m
of (f,i, m) may also be considered to specify the
position, reading from top to bottom, of line (f, i, m)
relative to the other lines of the set of lines I',; that
joins bubbles i and f. The condition imposed earlier
that lines attached to a given bubble do not cross
within the box insures that the ordering of the lines
of I',, is well defined; the relative ordering within one
box of any set of lines of I, is the same as the ordering
of this set of lines in the other box. This condition that
the ordering of the lines I, be given by m is, however,
the only restriction on the ordering of the intermediate
lines; one readily confirms that the various inter-
mediate lines, as identified by their topological indices
(f, i, m), can occur in any possible order (reading
from top to bottom), subject only to this condition
that the relative ordering of lines in the various sets
I',; be in accordance with the index m. The term
coming from each of these allowed orderings is a
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different contribution to the product (A2). Thus, in
this product, the number of different contributions
that are topologically equivalent to a diagram B is just
the number of different allowed orderings of these
intermediate lines. This is just the total number of
orderings n! divided by the product of the number of
orderings within each set I';;. Thus we obtain (A5).

In the text it was specified that the region of inte-
gration in the definition of bubble-diagram functions
M?P be restricted so that contributions from topo-
logically equivalent diagrams are counted only once.
In the derivation of (A4) no such restriction on the
range of integration was imposed, and the corre-
sponding functions were written as A7B. These two
functions are related by the factor c;. The point here
is that the various lines of a set of lines connecting a
given pair of bubbles are regarded as topologically
equivalent. Thus, in computing M%, the integration
region is restricted so as to include only one of the set
of contributions obtained by interchanging the lines
of such a set. This restriction on the domain of
integration in the definition of the functions MF
means that the M% in (A4) divided by JT N,,!is just
M?%_ Thus, in place of (A4) one obtains

F(K'; K" =Y MB(K’; K"). (A7)
B

The notion of topological distinctness has been
applied on two different levels: When in (A4) or (A7)
we say the sum over diagrams B is over topologically
different diagrams B, we are considering B to be simply
a collection of lines and bubbles joined to give a
geometric figure; the lines are not yet assigned
particular variables. But when for a fixed B we say
that the integration region defining M?% is restricted
so that topologically equivalent diagrams are counted
only once, then we are considering variables (p;, t;)
to be assigned to the lines. This separation into two
levels is evidently arbitrary.

The proof given above can be shortened and ex-
tended to products of arbitrary numbers of boxes by
arguing as follows. In the integration corresponding
to the sum over the set of intermediate states, one is
supposed to count only one of the set of possible
contributions obtained from the various possible
reorderings of the variables. A reordering of variables
corresponds to a reordering of the lines associated
with the intermediate particles. Thus, the ordering
of the intermediate lines can be considered to be
completely irrelevant; the intermediate lines can be
identified by the value of the associated variables
alone. For every way of connecting the various bubbles
of the various adjacent columns by lines, and assigning
a fixed variable to each line, there is at least one
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contribution to the over-all function.We now define
diagrams with fixed variables attached to each line
to be topologically equivalent if and only if they can be
made identical by some reordering of the various
bubbles within the various columns. It then follows
that the contributions from two topologically equiv-
alent diagrams should not both be counted. For
they must both arise from contributions to the
individual boxes that are topologically equivalent,
and hence identical. On the other hand, no two
contributions that are not topologically equivalent
in this sense can come from a single set of contri-
butions from the various boxes. Hence_ the restriction
to topologically different diagrams leaves one with
precisely one complete set of independent contri-
butions.

The consequence of this argument is that the
function corresponding to a product of any number of
functions S and St, with the intermediate sums
defined as in the unitarity equations, is represented by
the function M3, where B is the natural topological
product of the boxes representing the individual
functions S and S'. One can decompose the various
boxes into sums of terms represented by different
columns of bubbles. The natural topological product
does not include diagrams that are topologically
equivalent in the sense that they differ only in the
ordering of bubbles within a column or by the path
followed by intermediate lines. (Only the end points
of the lines are significant.) For each diagram B of the
natural topological product there is one term MP.
In evaluating this term the integration is restricted
so that topologically equivalent contributions are
counted precisely once, where now each line is
identified by a variable (z,p;).

C. Example

In the main text the combinatoric questions are
automatically taken care of by the use of functions
MBE; the restriction on the ranges of integrations of
these functions makes everything correct. To exhibit
the combinatoric questions resolved by this notation,
and to confirm our basic formulas, we rederive the

+|-=3+ -+ + -

1l

LELF TR TICE+ 4 3 T
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formulas of Sec. 4 starting directly from Eqs. (Al)-
(A3), and using instead of the functions M?Z rather
the functions #%, which have no restriction on the
domain of integration.

First consider two-particle unitarity. The two-
particle box is given by

mE RO st lw el ety

In (A8) the incoming and outgoing lines are identified
redundantly both by an integer and also by the
vertical position of the external end points. In the
remainder of Appendix A we suppress the integer
and use only the latter method of labeling. Below the
three-particle threshold, we obtain

LTI = (OO 20rdr
+@g IS OUR e o4
+ TIDC+TDCHHDEX) (49
g2O=O2: 0220

y — +

(A8)

>,

where the factor 1/2! comes from (A3). (This factor
1/2! does not appear in the equations of the text
because there the diagrams represent always the
function M” whereas in this section they represent
the functions M%) Equation (A9) is evidently in
agreement with (A4). The last two terms on the right-
hand side of (A9) are equal to the identity

{F=2=
so that the connected part of the unitarity equation is
T + X =-5 WO =- 6, (Al

By a completely analogous procedure we obtain,
after combining various terms,

(A10)

(Al12)

t5 L AT+ T AT ST e DT 4 STE LS
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where the summation signs are interpreted as in Sec. 4.  part of (A12) by
The disconnected parts of (Al2) are equal to the S
identity by virtue of (A11), so that the connected part 3'7 (Al13)
of (A12) vanishes, by unitary.

To obtain (4.6) when there is no restriction on the Consider, for instance, the postmultiplication of the
range of integration, we postmultiply the connected nine dumbbell terms of (A12),

Z - & I ), 1
f
by the 6 + 9 terms of Similarly, the postmultiplication of the terms
¥ - _l_z ( = + —C ) |
e CF + 4 (7 T Ts)
=—3'TZ(E+ T+ 5+ XTI ), (A18)
i

(A15) of (A12) by (A13) gives

.
31

The result of the multiplication is

D m R wt  (Al6) LE+: 2T, @

The last two terms combine to give These results check with (4.6) if we take account of

the factors N_,! that relate M7 to M.

(AL7) Using (All), we obtain

! -
b %+ S % -
f
L _1 _ -
(XTI 2E) (B ) S o
f L)
f
Substituting the unitarity equation into (A20), we obtain

T TR E-TE T Il =+ T

(A20)

(A21) (A22)

Equations (A20) and (A22) check with Eqs. (4.7) and (4.8) of the text if the factors N,,! relating M5 to M”
are considered.

The remaining equations of Sec. 4 now follow from the equations already derived and pose no combina-
torial problems.
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APPENDIX B: DETERMINATION OF Mi(K’; K")
USING FREDHOLM THEORY?

The M!(K’; K") are defined by (5.8). Let us first
assume that E < M,. Then a comparison of (5.8)
and (5.6) shows that

A -0k

and that (5.19) must hold. Thus, (5.8) can be written
in the form

- -T2 - AT

(B1)

(B2)
Let us now postmultiply (B2) by
9
Q. ®)

and go through exactly the steps that led from (5.46)
to (5.49), but making the replacements

+ i, —i—>—, P,—>Q,.

Then in place of (5.49) we obtain

Q Q.
@ = + mrm

where
7 =2Cn - (L7,
- wm - o T[T

The connected part of (5.8), premultiplied by @;,
can be written in the form

(B4)

(B3)

(B6)

(B7)
0y 4+ o
- (BCT).- ¥Om
Substituting (B7) into (B5) we obtain
wOm (w1 a(<w)=0FR | (py)
where
{7F =& T"e) » 108, 9)

The kernel of the integral equation (BS) is given in

2 The application of Fredholm theory to the problem of continua-
tion of many-particle scattering amplitudes to unphysical sheets
has been discussed earlier by H. P. Stapp in Lawrence Radiation
Laboratory Report UCRL-10261, 1962, and Nuovo Cimento 32,
103, 1964; J. Gunson, Ref. 2; D. 1. Olive, Nuovo Cimento 28,
1318 (1962).
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explicit form by the equatlons _ o o
oF - 3.5 E!IEE+Z¢,
(B10)
Q; Q; Q;
A - :E@E + 2 JCERE , G
o - do
and q
I - $0r. (®13)

The delta function appearing in (B10) combines
with the remaining terms of this equation to give a
pole with a plus-ie rule. This follows from an argu-
ment similar to that used by Olive, except that one
uses (5.21) rather than (4.5) to combine the residues
of the poles.® The contour of integration can be
distorted away from the remaining singularities of the
kernel.?* Thus Eq. (B8) can be solved for M(K’; K")
through the Fredholm formula.

Using Eq. (5.21) we can express the right-hand side
of (B8) in the explicit form

Q.

17k - z&z@ﬁ O

0; Q; 0; 0; (514
+X - N )’

+ 1'-’--(—

(B15)

7 =~ <CE- SO

4 (B16)

{7 = - 5 TOr,
and - O B17)

We suppose that*(5.21) has been solved already for
M}, and that this solution has been substituted in
(B14), (B15), and (B16), as well as in (B10) and (B11).
It is then seen that the Fredholm solution of (BS§)
expresses Mi,, Mi;, and M}, in terms of bubble-
diagram functions all of which follow a minus-ie
prescription at the normal two- or three-particle
threshold at E = M,. It then follows® that the solu-
tion M¥K’; K") of (B8), and moreover Eq. (5.8)

30 D. I. Olive, Phys. Rev. 135, B745 (1964); see also R. J. Eden,
P. V. Landshoff, D. I. Olive, and J. C. Polkinghorne, Tke Analytic
g’-];llaztrix (Cambridge University Press, Cambridge, England, 1966),

81 The argument is essentially the same as in the proof of the
third structure theorem of Ref. 13.




394

itself, can be analytically continued from E < M, to
E > M, by following a minus-ie rule.

The original restriction to E < M;, which we used
to justify (B2), entails that the set of incoming particles
and the set of outgoing particles each have a sum of
rest masses less than M. Thus these sets are, in effect,
cut by a Q; bar. Hence the Fredholm solution of (B8)
is an explicit expression for

Q; . Q;

2O

for E < M, that has a minus-ie rule for continuation
past the normal threshold at E = M;. In Appendix C
we will enlarge upon this result and show that Eq.
(B8) also determines M*(K’; K”). (That is, the Q,
bars can be omitted.)

The fundamental result established above is that the
physical scattering function has a continuation past
the normal-threshold singularity in the minus-ie sense,
apart from possible poles coming from the vanishing
of the Fredholm denominator. Discounting the
possibility that these poles become dense,*? we obtain,
using the same arguments that led to the third
structure theorem, the result that all terms in (5.8)
can be continued in the minus-ie sense around the
normal threshold at E = M,. Thus, this equation
can be regarded as valid on both sides of E = M,,
with M*K’; K”) a function that has a minus-ie
continuation around the singularity at £ = M.

(B18)

APPENDIX C: PROOF OF EQUATION (5.19)
In Appendix B we showed that the equation

(Cn

valid for E < M, can be analytically continued to the
region E > M;. We now show that Eq. (5.19) is a
consequence of (Cl) and the definition (5.8).

It follows from (Cl) and (5.8) that

(&)

and
Q

and also that

0. N
= (2

(C3)

(C4)

(C5)

32 A. Martin, CERN preprint.
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Comparison of the right-hand sides shows that the
left-hand side of (C2) is equal to the left-hand side of
(C3), and that the left-hand side of (C4) is equal to the
left-hand side of (C5). Using this result and Eq. (5.8),
we obtain

Q. p

(Ce)

and

(€N

Since the right-hand sides are equal, so are the left-
hand sides, and hence the proof of (5.19) is complete.

Since Eq. (B8) was based on (5.8), (5.19), and
nothing else, we see that (B8) can be used to determine

G oo G ©
as well as

Q_g

- O _JN (C9)

Alternatively, we can determine the quantities (C8)
in terms of (C9) by directly using (5.8) and (5.19).
Thus, we may write

omp o.ljp, o.m"i P,
=T - >

(C10)
O --TO - O (C11)
and
CF -0 et
(C12)

RS, P
« CTN.
APPENDIX D: THE F,, AS SHEET CONVERTERS

The right-hand sides of the discontinuity equations
given in the previous sections are expressed in terms of
plus bubbles and F boxes. These boxes are defined in
terms of physical scattering amplitudes by Fredholm
integral equations. It is shown in this appendix that
the effect of applying a (nontrivial) F box to the
physical scattering amplitude is to convert the latter
to its value on the unphysical side of a certain cut.
This result allows one to express the discontinuity
formulas in all cases considered in this paper in terms
of the scattering amplitudes evaluated on various
sheets, instead of in terms of physical amplitudes and
F boxes. The proof depends, however, on the so-
called extended unitarity equations.

In the main text we have been careful to use only
physical unitarity equations. In particular, the various
momentum vectors are always real, apart from infini-
tesimal variations needed in the continuation around
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Landau singularities. This restriction means that
the unitarity equations below a certain threshold in
the total energy at £ = M, hold only if the sums of the
rest masses of the initial and final particles are both
less than M,. There are similar restrictions on the
masses of subsets of initial and final particles associa-
ted with subenergies. The equations obtained if one
relaxes these conditions are called extended unitarity

equations. Their justification within the S-matrix_

framework is discussed in Refs. 13, 30, and 33.
In this appendix these extended unitarity equations
are assumed without further comment.

Consider first the set of Landau diagrams

D|z=>q>< .

From (5.22) and the fact that M}, has a minus-ie
continuation past M1[D,,], we obtain

B - (5=~ 3 o

(2 =-OF)ICx,
where
= M3, (07) . (D3)

This derivation depends on the assumption that the
region E < M, contains physical points. That is,
within the framework of the physical unitarity equa-
tions, the derivation of (D2) and (D2’) is only justified
if the set of incoming particles and the set of outgoing

P

(D1

(D2)

=01 0::0 20"
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particles each has a sum of rest masses smaller than
M. This restriction can be represented by placing @,
bars on the external lines. By virtue of the extended
unitarity assumption, this restriction can be dropped,
and one obtains as special cases of (D2) and (D2’)
the results

P p P
- (09
and
i Pip
S EIONNNN T

Similarly, using the results of Sec. 4, we find that

Pi R
T - ®
where

Next consider the set of Landau diagrams

NP S

The discontinuity around the set of Landau surfaces
M+ [Dy,] is derived, according to the method of Sec.6,
by noting that the connected part of (5.18) can be
written in the form

P. P;

GE-S TR

o
Myal O7)= (D6)

(D)

- TE -2 (Y - 2 = = 0,

where only the first four terms can support a diagram of the set D,; with all «’s positive. Thus we obtain

P

-°

= Qs

P

+

p P

3% J. B. Boyling, Nuovo Cimento 33, 1356 (1964).

- O (5233 - <0F )
OF (- TOF )

-]

(D9)
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where

Mi(0n). @)

Using similar methods we can establish the more
general results

PP
40 V// (D11)

an
W /// 7/ (D12)

Formulas (D4), (D4'), (D5), (D11), and (D12)
can be substituted on the right-hand side of the
various discontinuity equations derived earlier. The F
boxes are thereby eliminated, but the scattering
functions are evaluated on unphysical sheets.

APPENDIX E: PROOF OF THE ABSENCE OF
CERTAIN POSITIVE-« LANDAU SINGULAR-
ITIES IN CERTAIN BUBBLE-DIAGRAM
FUNCTIONS

In this appendix we prove that certain sets of bubble
diagrams occurring in the equations of the main text
and in Appendix D cannot support certain Landau
diagrams with all «’s positive, provided the signs of
the o’s are restricted in accordance with the second
structure theorem.

Consider first the Landau diagram D, defined in
(5.27) and the set of bubble diagrams R, defined in
(5.31). Let each M}, occurring in R, be replaced by the
right-hand side of (5 13). Since we are interested only
in Landau diagrams with all «’s positive, all minus
bubbles in R, can be replaced by point. vertices. Then
the function M}, can also be replaced by a point
vertex since none of the internal lines shown in the
right-hand side of (5.13) can be a line of D,. It is
seen by inspection that no term in R, , except possibly
contributions of the type

Q;

i
k 14

can support D, with all «’s positive. [The letters
labeling the internal lines in (E1) stand for a specific
set of integers.] Clearly, the bubble diagram B,
cannot support D, with all «’s positive if line m is
contracted. Thus, this line must be one of the two
internal lines of D,. The other line of D, cannot be i,
because of the projection Q,, nor can the remaining
line of D, be line j (or k) for the resulting Landau
loop equation; ap; 4+ «,,p,, = 0 cannot be satisfied
with all o’s and all p? positive. Finally, the second line
of D, cannot be an internal line of the 3 — 3 plus

(ED)
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bubble because the stability requirement would then
force one final external line to emerge from the right-
hand vertex of D,, contrary to its definition. Thus all
the possibilities are eliminated, and B, cannot support
D, with all «’s positive. Hence, neither can R, .

Next consider the diagram D; defined in (5.33).
After carrying out the substitutions specified in Sec.
5C, we see by inspection that no term of (4.6), except
MY, , T(Dj), and possibly contributions of the type

Q;

o
°.¢o

can support D; with all «’s positive. Line m of B,
cannot be contracted and must be line 4 of D;. Then
applying the same arguments as above, we conclude
that B, cannot support D, with all «’s positive.
Similar arguments can be made for the extended
ice-cream cone diagram.

Consider next the diagram Dj; defined in (5.43).
The 3 — 3 i bubble occurring in (5.52) cannot support
D; with all o’s positive. This follows by considering
the right side of (5.12), a typical term of which is
9 Qi Qi Q QQ

| |

85=K-\ I _I'fi S .

All the bubbles of By can be contracted to points.
Line m must evidently also be contracted if one is to
obtain Dj;. One then sees that any way of picking out
three internal lines of By such that the contraction of
all others leads to a diagram with the structure of Dy
is such that these three lines are cut by the same Q, bar
of B;. But then these three lines cannot be lines 1, 2,
and 3 of D;, and hence B; cannot support D; with all
«’s positive. Similar arguments show that none of the
terms on the right-hand side of (5.52) can support Dj
or Dg [or in fact any of the diagrams of Dy defined in
(6.2)] with all a’s positive.

The 3 — 3 i bubble cannot support the last diagram,
D, on the right side of Eq. (D7) with all o’s positive.
To see this, consider again the typical term B;.
Evidently, D;, cannot be obtained if m is contracted.
Thus m must become one of the two internal lines of
Dy, . The second one cannot be f, because the Landau
equations are not then solvable with positive «;’s and
pYs. Thus the second line of D;, must be line k of B;.
Then B; cannot support D;, with all «’s positive
because of the restrictions imposed by the Q, bar.
Similarly arguments show that the last two terms on
the left of (D8) cannot support Dj, with all «’s
positive.

Because minus bubbles can be contracted to points,
we see that no term on the right side of (6.10) can
support a diagram of the set D}, with all o’s positive.

(E2)

(E3)
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The Ehrenfest wind-tree model—a special case of the Lorentz model—where noninteracting point
particles move in the plane through a random array of square scatterers, is used to study the divergences
previously discovered in the density expansions of the transport coefficients. Two cases for which the
results are qualitatively different are discussed. When the scatterers are not allowed to overlap, the
diffusion of particles through the array of scatterers is normal, characterized by a diffusion constant D.
The calculation of D~ is carried to the second order in the density of the scatterers, and involves a
discussion of the above-mentioned divergences and a resummation of all most-divergent terms in the
straightforward expansion of D-'. If, however, the trees are allowed to overlap, the growth of the
mean-square displacement with time is slower than linear, so that no diffusion coefficient can be defined.
The origin and possible relevance of this new phenomenon to other problems in kinetic theory is dis-
cussed. The above results have stimulated molecular dynamics calculations by Wood and Lado on the
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same model. Their preliminary results seem to confirm the theoretical predictions.

1. INTRODUCTION

It is well established by now that a straightforward
generalization of the Boltzmann equation to higher
densities is not possible.! As a consequence, a density
expansion of the transport coefficients does not, in
general, exist. In fact, a natural generalization to
nonequilibrium of the methods used to obtain virial
expansions in equilibrium leads to divergent collision
integrals, and thereby to infinite virial coefficients for
the transport coefficients.:

The same infinities are found in the density ex-
pansions? of the transport coefficients, as expressed in
terms of time-correlation functions.!+® Kawasaki
and Oppenheim,* in addition, proposed a formal
resummation of the expansions which removes a
certain class of most-divergent diagrams in each
formal order of the density.

Although no rigorous proof of the divergences
exists,® their origin is in principle well understood.
An explicit discussion of the difficulties, as well as of
the proposed remedies, however, is complicated by
the intricacies of the dynamics of groups of particles
interacting through a general short-range potential.

1 See for example, J. R. Dorfman and E. G. D. Cohen, J. Math.
Phys. 8, 282 (1967).

2J. V. Sengers, Phys. Rev. Letters 15, 515 (1965).

3 R. Zwanzig, Phys. Rev. 129, 486 (1963); K. Kawasaki and I.
Oppenheim, Phys. Rev. 136A, 1519 (1964); M. H. Ernst, J. R.
Dorfman and E. G. D. Cohen, Physica 31, 493 (1965).

4 K. Kawasaki and L. Oppenheim, Phys. Rev. 139A, 1763 (1965).
See also their paper in Proceedings of the IUPAP Meeting, Copen-
hagen, 1966, T. A. Bak, Ed. (W. A. Benjamin, Inc., New York,
1967), p. 313.

5 1. K. Haines, J. R. Dorfman, and M. H. Ernst, Phys. Rev. 144,
207 (1966).

¢ Except in the case of special models.

For such a discussion it seems therefore natural to
consider models which are complicated enough to
contain the essential difficulties, but sufficiently
simple to permit explicit calculations. The Lorentz
models, where one studies the motion of particles
without mutual interaction through a random array
of stationary scatterers, form one such class of
models.

The purpose of the present paper is to investigate
the difficulties outlined above as they manifest them-
selves in a special case of the 2-dimensional Lorentz
gas. Before this work was completed, the results of
similar - studies became available.”® In particular,
van Leeuwen and Weijland” considered the 2- and
3-dimensional Lorentz models with circular (spherical)
scatterers and demonstrated explicitly the existence of
divergences in the density expansion of the diffusion
coefficient. They were also able to elucidate the
resummation of Kawasaki and Oppenheim. Their
model was still too complicated, however, to make
feasible a computation of the full first order (in the
density) for which resummations become necessary.!®

For a special case of a 2-dimensional Lorentz model,
the wind-tree model introduced by Ehrenfest and
Ehrenfest!!—where the randomly distributed scatterers

7J. M. J. van Leeuwen and J. Weijland, Phys. Letters 19, 562
(1966); Physica 36, 457 (1967) and 38, 35 (1968).

8 J. L. Lebowitz and J. K. Percus, Phys. Rev. 155, 122 (1967).

® W. Hoegy, thesis, University of Michigan, Ann Arbor, Mich.,
1967.

10 For example in the case of circular scatterers, where the O(n?)
contribution is the first order in the density n of the scatterers that
diverges, van Leeuwen and Weyland computed the coefficient of
the term of O(n2 In n), but not of O(n?).

' P, Ehrenfest, Collected Scientific Papers (North-Holland
Publishing Co., Amsterdam, 1959), p. 229.
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are squares with parallel diagonals—we show?? that
in the case where the squares are not allowed to over-
lap each other, it is indeed possible not only to
demonstrate the existence of the divergences and
discuss their elimination, but also to obtain essentially
the complete first correction to the Boltzmann result
for the diffusion constant. This again has stimulated
a direct evaluation of the diffusion coefficient for this
case by molecular dynamics by Wood and Lado, and
thus made possible a confrontation between theory
and “experiment.”

We also consider the case that the squares are
allowed to overlap each other. In this case, however,
the very simplicity of the model introduces new
difficulties which lead to the discovery of a novel type
of divergence, which does not exist in the case of
nonoverlapping scatterers within the order to which
the calculations are carried out. This qualitative
difference between the two cases seems to be confirmed
by the machine calculations.?

In Sec. 2, the precise definition of the model treated
in the present paper is given. Section 3 contains the
basic formulas on which the subsequent discussion is
based. The Boltzmann result for the inverse diffusion
coefficient and that part of the first correction to it for
which resummations are unnecessary are given in
Sec. 4. The existence of the divergences is demonstrated
in Sec. 5, where a general prescription for their removal
is also given. In Secs. 6, 7, and 8, the contributions
to the first correction to the Boltzmann result
stemming from the Various classes of most divergent
diagrams are calculated. The significance of the results,
particularly of the new type of divergence discovered
in Sec. 8, are discussed in Sec. 9.

2. THE MODEL

In the Ehrenfests’ wind-tree model, classical point
particles without mutual interaction (the ‘“wind”
particles'*) move in a plane through a random
array of immovable square scatterers (the “trees” )
with parallel diagonals of length 2a. The particles
move only in the four directions parallel to the
diagonals of the squares.

In this paper we are interested in the asymptotic

12 The main results have been published previously; see E. H.
Hauge and E. G. D. Cohen, Phys. Letters, 25A, 78 (1967). The
following detailed report on the present problem is available:
E. H. Hauge and E. G. D. Cohen, “Divergences in Non-Equilibrium
Statistical Mechanics and Ehrenfest’s Wind-Tree Model,” Det
Fysiske Seminar i Trondheim, No. 7 (Institute for Theoretical
Physics, N.T.H., Trondheim, Norway, 1968).

13 W. W. Wood and F. Lado (private communication).

1 This picturesque vocabulary is not found in Ref. 11. However, P.
Ehrenfest used it in his lectures, and it has also appeared previously
in the literature.!5

15 A. J. F. Siegert, Phys. Rev. 75, 1322 (1949).
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time dependence of the mean-square displacement,
A@) = (k@) — 1O, 2.1

of the moving particles, where r(¢) is the position of a
particle at time ¢. The average ( ) is to be understood
as follows:

First, the scatterers are distributed randomly over
the plane according to one of the following two
prescriptions:

(A) All configurations are equally probable (i.e.,
overlapping squares are allowed).

(B) Configurations with overlapping squares are
excluded. All other configurations are equally probable.
(These are referred to as Cases A and B, respectively.)

Second, the moving particles are inserted between
the trees at ¢t = 0.

Third, one averages over the square displacement
of the moving particles at ¢ for all allowed con-
figurations of the scatterers.

By this prescription!® for the average, we have
excluded (as we are free to do in our model) any
influence of the moving particles on the distribution
of the trees. Furthermore, since the moving particles
have no mutual interaction, we have at the same time
reduced the problem to that of a single particle moving
through a random array of scatterers.

For A(t) we appeal to the well-known equation

20 = 2Ltdt’<v(t') 20

t
=2fav@ @) @2
0
where all we have used is the property of time trans-
lation invariance of the average, i.e., (v(¢") - v(?)) =
(v(0) - v(t — t")). When the diffusion coefficient D
defined by
D =liml

t-*aoz

t

dr(v(0) - v(1)) 2.3)
0
exists and is nonzero, the asymptotic time-dependence
of the mean-square displacement is clearly

A(t) ~ 4Dt 2.4)

and the problem is thus reduced to the computation
of D.

Strictly speaking, with the system enclosed in a
box of finite “volume” V = L2, A can at most become
of O(L? and it follows from (2.2) that the resulting
diffusion coefficient (2.3) vanishes identically. For
(2.3) to be a meaningful definition of D, it must be

18 Which is precisely the one adopted by Wood and Lado in their
molecular dynamics calculations.
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understood that the thermodynamic limit N — oo,
V — o0, NJV = n, where N is the number of scatterers
in V, must be taken before the limit 1 — co.

Even with the limits taken in this order it will be
shown in Sec. 10 that with overlapping trees the
diffusion coefficient vanishes. This should be inter-
preted as a result of an abnormal diffusion process in
which A(?) grows slower than linearly with time for
long times. The detailed discussion of this phenom-
enon will be postponed to Sec. 9.

3. BASIC FORMULAS

In this section we give the formulas on which the
discussions in later sections are based. For details of
their derivation the reader is referred to Appendix A.

For the inversion introduced later in this section,
but in particular for the binary collision expansion
used to discuss the divergent terms and their resum-
mation in Secs. 5-8, it is convenient to introduce
Laplace transforms. Accordingly we adopt a definition
of the diffusion coeficient differing slightly from (2.3):

D' = lim
€E~0 2

0

dte™%v(0) - v(1)). 3.1
0
For the purposes of the present paper the two def-
initions are completely equivalent, and the distinction
will not be made from now on.

For simplicity we assume that the moving particles
all have the same absolute value of the velocity v,
and one can then write

D = lim }v - (v, ¢), (3.2
with 0
$ = lim f J dr dQ¥ p(r, QMG(QY, x, ©)v, (3.3)
NV-w
N{V=n 14

where O = {Q,, -+, Qu} are the positions of the
N scatterers. x = (r,v) is the phase of the moving
particle and G(QV, x, €) = G(1 - - - N) is the Laplace
transform of the dynamical operator exp (t3€):

>0

G(1---N) =J0 dt exp (—et) exp [13(x, Q)]

= [e — X(x, gM)]7, 34
where exp [tJ(x, Q)] transforms the phase of the
moving particle at £ = 0 into that at 7, and is defined
by

F(x(1)) = exp [t3(x, QVIF(x(0)),  (3.9)
for any F(x). The probability distribution p(r, Q%)
for one moving particle and ¥ scatterers is, according
to the prescription in Sec. 2 for the average, given as

p(r, @) = Z§' exp [—H(r, V)], (3-6)
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with
Zy =f- . -fdr do¥ exp [-H(, 0M)]. (3.7
One can write 4
N
H(r, Q") = EIV(r - Q)+ ’ZZW(Q;C -Q) (3.8

and in the two cases treated in this paper one has
Aand B: V(r — Q,)

oo, when r is inside scatterer number k,
= ) 3.9
0, otherwise.
A) W4 (Q,—Q)=0; (3.10)
B) WpQ,— Q)
co, when scatterers numbers
= k and ! overlap, (3.11)

0, otherwise.

A direct density expansion of &, and thus of the
diffusion coefficient, can be shown not to be meaningful
in the limit € — 0.2 However, when (3.3) is inverted to
give v in terms of &, one can derive the following
expression for the inverse diffusion coefficient (see
Appendix A):

D™ =247ty = lim 2a77(e),  (3.12)

with

y(€) = av3v -+ K(v, ¢, n)v. (3.13)

The operator K is given as a formal power series in the
density ©
K =Y nlK,,
1=1
where K; is expressed in terms of Laplace transforms
of dynamical operators involving / scatterers only.
The explicit expressions for /=1, 2 are given in
(A18) and (A19), and will be used in the next section
to compute the corresponding contributions y,, y, to
v, which are well behaved in the limit € — 0.

For / > 3, the expansion (3.14) is shown in Sec. 5
to contain terms leading to divergent contributions to
y in the limit € - 0. In Sec. 5 we express the X,
operators in terms of binary collision operators, and
it is shown that the expansion (3.14) then serves as a
useful starting point for resummations by which these
divergences are removed. Consequently, Eqgs. (3.12)-
(3.14) are adopted as the basis for the subsequent
discussion,

(3.14)

4. FINITE RESULTS FROM THE INVERTED
EXPANSION TO 0O(n?)
The two first terms in the formal density expansion
of the operator K [see (Al8)-(A21)] give rise to
contributions to ¢ that are finite in the limit ¢ — 0.
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FiG. 1. Events contrlbutmg to Ya.

Except for their numerical values, they are conse-
quently not of central concern in this paper, and no
detailed derivation of the corresponding contributions
to y is given here.’” However, it is interesting that they
can all be stated in the form of phase integrals
associated with certain collision events, as is exhibited
below.

The term of O(n) (the “Boltzmann term”) follows
from (A18) and (A20) in the limit € — 0 and is pro-
portional to the total cross section of the scatterers
(cf. Fig. 2.):

(2
71 = lim p,(e) = anf db, = 2p, “4.1)
€0 —-a

where b, is the impact parameter in the collision
between the moving particle and tree 1, and where
p = a’n is the dimensionless density of the scatterers.

The operator K, of (A19) gives rise to contributions
to ¥ of O(p?) [see (A21)]. Some of these terms corre-
spond to actual collision events with two trees, while
others should be viewed as corrections to the O(p)
result due to the nature of the expansion formalism.
In the limit € — 0, however, they can all be expressed
in terms of phase integrals of the type
®

db,| dQ,, (4.2)

a
P = lim 549 = an* [
€0 —
where Q, is kept fixed, and with various restrictions,
here indicated by (i), on the integration over Q,.
We define three types of contributions:

(A) The “real” contribution p{” stems from events
of the type shown in Fig. 1(a) with real collisions only.
The corresponding restrictions on the integration over
Q; are such that:

(i) the moving particle collides with tree 1 first;

(i) the total number of collisions in the event is an
odd integer larger than, or equal, to 3.

17 Details are given in Ref. 12.
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With these restrictions integration yields
P = (9 — D).

(B) The “‘virtual” contribution y{* corresponds to
the event shown in Fig. 1(b) and the integration is over
configurations such that

(i) the particle first has a “virtual” collision (i.e.,
it passes through tree 1);

(ii) it subsequently suffers a real collision with
tree 2 and a second, real collision with tree 1. Possible
additional collisions should not be taken into account.

The result of the integration is

y = o, (4.4)

The contributions (4.3) and (4.4) are independent of
whether the trees are allowed to overlap or not. In the
derivation of p{”, however, the factor g(r, 1, 2) in
(A21) was put equal to unity. This is strictly correct in
the limit € — 0O for Case A, but with nonoverlapping
trees it leads to an error which is corrected for by the
following,

(4.3)

(C) The last type is the “overlap” contribution,

which vanishes by definition in Case A:

i = 0. 4.5

In Case B it can be written as a sum of two terms,
both of the form (4.2):

ng)B — _I(O) + J(O)_ (4.6)

1'9) stems from events of the type shown in Fig, 1(c)
and the restrictions on the integration are accordingly:
(i) tree 1 overlaps with tree 2;
(ii) the particle has a real collision, first with tree
1 and subsequently with tree 2.
The result is
10 = #p2,

CY)

Figure 1(d) shows the type of events leading to
JO, where

(iii) trees 1 and 2 overlap;

(iv) the particle first has a virtual collision with
tree 1 and subsequently a real collision with tree 2.

One finds

JO =382, 4.8)
so that
OB = 45" 4.9

Summing (4.3), (4.4), and (4.5) or (4.9), for the
complete O(p?) contribution stemming from KX, one
finds
(4.10)

(4.11)

va = (7%9)p%,
ve = (79 + 4)p%.
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Two remarks are here in order:

(a) According to the rule given by Kawasaki and
Oppenheim,* y, should diverge for 2-dimensional
models like In € in the limit ¢ — 0. This is in fact
borne out by the Lorentz model with circular scat-
terers,” where the divergence can be traced to the event
corresponding to the first one shown in our Fig.1 (a).
In the present case, however, the divergence is sup-
pressed because the discreteness of the velocity space
poses a severe restriction on the allowed phase of tree
2 relative to tree 1. The example shows that the
details of the interaction cannot be completely
neglected in arguments like the one given in Ref. 4.

(b) It is also worth noting that in a Lorentz model
with oriented polygons of 4N sides as scatterers,
in the limit € — 0, one finds

y4(0) ~ p?In N 4+ terms finite when N — o,

so that in the circular limit N — co (at constant
diameter), we retrieve the logarithmic divergence
mentioned under point (a).

If the operator K of (3.14) had been well behaved
in the limit € — 0, the results (4.10) and (4.11) would
have been the complete contribution of O(p?). We
show in the following section, however, that the
K expansion still contains divergences as € - 0, and
as a result (4.10) and (4.11) do not represent the
complete contribution to y of O(p?).

5. DIVERGENT TERMS
A. Resummations

For! > 3 the expansion (3.14) gives rise to divergent
contributions to y(e) in the limit € — 0, as is shown
explicitly below. The great majority of the most
divergent terms to each order in n, which are of
central interest in the following, are independent of
the statistical factor p(r, @¥) in (3.3). Accordingly it
is convenient to split the operators K; (/ > 3) of
(3.14) into two parts,

K, = K& 4+ K. .1

The “dynamical” part K¢ is defined as the resulting K
if p(r, @¥) in (3.3) is put equal to unity. Equation
(5.1) then defines the ‘‘statistical” part K* as the
corresponding correction term. By definition, K is the
same for both Cases A and B, while K¢ is different in
the two cases.

A simple representation of K2 in terms of the paths
of collision events with / trees (essential for the
classification of events) is derived by the following
two steps:

First, we express K2 as an expansion in terms of the
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FiG. 2. Effect of the binary-collision operator.
binary collision operator C(1, x, €) = C(1), given by

C(D)F(v,r) = e {F(v;, T + vr)) — F(v, 1 + v1,)},
(5.2)

for any function F(v, r) (see Appendix B). Here r, is
the time from the initial configuration (r, v, Q,) until
the collision of the moving particle with tree 1. If
there is no such collision, C(1) = 0 and we conven-
iently define 7, to be infinite. The velocities before
and after the collision are v and v,, respectively
(see Fig. 2).

The binary-collision expansion®!® of K2 reads as
follows (see Appendix B):

Kiv=—e3 3 [ [ageay - i
p=1+1 {3}
(1,---,5) (5.3)

where conditions on the sum over the sets of labels
{i} are the following:

(1) All labels i « - - i, belong to the set {1 -- -1},

@) i1 HFl,n=12,---,p—1.

(3) All labels in the set {1 - - - I} occur at least once
in the set {i; - -+ i,}.

(4) The labels are ordered with respect to their first
appearance in the sequence i * * -+ i,.

(5 The sum is over irreducible products only.

The term “irreducible” is defined in Appendix B.
A simpler definition in terms of the path of collision
events is given below.

The second step is to split the binary-collision
operator C into two parts, each of which has a well-
defined effect on the velocity:

c(l) = C(l) + C*(1), 54

where the real'® collision operator C7(1) is defined by
[cf. (5.2)]:

C'(DHF(v,x) = e "F(vy, t + v1y), (5.5)
and the virtual'® collision operator C¥(1) is corre-
spondingly given by

C*(V)F(v,r) = —e*"F(v,r + vry). (5.6)

18 T. D. Lee and C. N. Yang, Phys. Rev. 113, 1165 (1959); A. J.
F. Siegert and E. Teramoto, Phys. Rev. 110, 1238 (1958).

'* The terms “‘real” and “virtual” are here used in a similar sense
as in Sec. 4.
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F1G. 3. Graph representing the product C*(1)C7(2)C"(3)C*(2)C*(3)
X C*(4)CT(5)C"(6)C"(1), or the same product with C*(3) missing.

Introduction of this splitting into (5.3) gives

Kiv=—e3 3 _fodQ

p=1+1 {i}
(1,+++,5)  sp=rv

X C(iy) -« Co(i)v. (5.7)

The point distinguishing (5.7) from (5.3) is that now
every operator in the integrand has a well-defined
effect on the velocity (with C* it still depends on the
impact parameter, of course). A given term in (5.7)
can therefore be given a simple graphical representa-
tion in terms of a path.2® An example is shown in
Fig. 3. The notion of an irreducible product is
readily interpreted on the basis of such diagrams. A
product of binary-collision operators (real or virtual)
is called irreducible if one cannot make the corre-
sponding graph disconnected by cutting the path at
any single point.

Using (3.4), (5.5), and (5.6), and introducing

© @
JdQl — uf dr,| dby,
[} —a

we can immediately perform the 7, integration in (5.7)
to get

nKiv=n'3 '3 (=1)""

p=1+1{i} {s}

XJ;dblf'-'flsz'--sz

X e———e(r3+ i '+r,,)vp({i}’ {S})
=n' z (=17

irr,r0

(5.8)

X f:zdbl f o f 4Q, - - - dQe,, (5.9)

where V is the number of virtual collisions in the
sequence {s}, 7, is the time between the (k — I)th

20 Note that there is not a one-to-one correspondence between

a product of operators and a graph. A product of C®(i)-operators
determines uniquely (apart from the trivial dependence on the
impact parameter of C?) the corresponding graph. A given graph,
however, can correspond to several products of operators. The
point is illustrated by Fig. 3 where to the second collision with
tree 3, one may or may not associate a virtual collision operator.
The respective contributions to ¢ will be of opposite sign, but will
not cancel since the additional C*(3) represents a restriction on the
integration over Q3. (See, however, Ref. 12, Appendix F, where a
class of events is considered for which the corresponding cancellation
is complete.)
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D 3

Vf= -V

FiG. 4. Event leading to a divergence.

and the kth collision, and v,({i}, {s}) the velocity after
the sequence of p collisions has been completed.
[That is, v,({i}, {s}) is the result of a product of C-
operators, characterized by the sets {i} and {s},
acting on the initial velocity v.] The prime indicates
that the integrations over Q, - - - Q, are restricted to
configurations such that the given sequence of
collisions can take place. In the second line we have
simply indicated that the sum should go over all
irreducible (irr) sequences of real () and virtual (v)
collisions involving / trees. Furthermore, v = Y, 7, is
the time between the first and the last collision in the
sequence, and v, the final velocity after the event has
been completed.
B. Divergences

It is now easy to see from (5.9) that all divergences
in the limit € — 0 have not been removed by passing
from the B expansion to the K expansion as was done
in Appendix A. Consider, for example, the sequence
of operators C*(1)C7(2)C"(3)C*(1). The corresponding
event is shown in Fig. 4. The leading contribution to
v - n3K3v from this event for small ¢ is, by (5.8) and

(5.9),
) 0 0 ©
v-n¥(—1)%| db, dbzf db, f d(vry)
—a —a —a 0

o(al
X d(vrg)e Tt y) ~ nipigle !,

]

(5.10)

which clearly does not exist in the limit € > 0. The
divergence stems from the vr, integration, i.e., from
the integration over infinitely long paths between
tree 1 and trees 2 and 3. We remark that

(i) the divergence difficulty in the example is not
spurious and one can convince oneself that the
divergent contributions to any single X do not cancel
in general®;

(ii) for a classification of the various contributions
the splitting (5.4) of C leading to a well-defined path
is essential ; and

(iii) the order of the divergences increases with
increasing order of n and, in general, one finds that
the most divergent contributions in a given O(n)

21 The order of the limiting processes is unimportant [the literature
contains statements to the contrary; see J. Stecki, Phys. Letters 19,
123 (1965)]. If we put € = 0 in the integrand of (5.10), we get a long
path divergence. If we integrate first, we get a divergence for small e.
And finally, if we had also performed an inverse Laplace transform
on (5.10) the result would have been a long time divergence.
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behave like
y(€) = nlavr¥v - Ky ~nle-2 [ > 32 (511)
C. Heuristic Discussion

The divergence difficulties encountered in Sec. 5B
are of precisely the same origin as those occurring with
more realistic models. The essence of cluster ex-
pansions, such as the one introduced in Appendix A,
is to express the properties of the total N-body system
as a series expansion, the terms of which are succes-
sively determined by the properties of the 2, 3,
4, - - - body systems. This is precisely the program that
leads to the equilibrium virial series for systems with
forces of finite range. In nonequilibrium, however, a
new type of infinite-range difficulty arises in such
expansions from correlations due to particles tra-
versing very long paths.

Physically speaking, what is wrong with (5.9) is that,
in the limit € — 0, events that need very long times for
their completion are overemphasized. From a purely
heuristic point of view, one is tempted to correct
for this by introducing a probability exp (—I/4) =
exp (—a7) that a straight path of length / = v be left
undisturbed. (Here A is the mean free path, and
a~! == Afv is the mean free time between collisions.)
If this is done, the effect on (5.9) is that even in the
limit € — O the damping exp (—a7) on the integrand
remains.

All the integrals thereby become finite. However,
the density dependence of every term will be different,
since to lowest ofder « ~ A~ ~ n. Effectively then,
all €’s can be replaced by (const X n)and the estimate
(5.11) for the most divergent contributions in any
formal order of » is changed to

y, = lim y,(€) ~ n'n™"® = pn? (5.12)

€0
Thus, that part within every formal order of # (in the
K expansion) which is most divergent as e — 0, in the
final analysis contributes to the first correction to
the Boltzmann result, and will thus be of the same
order as the y, computed in Sec. 4. Less divergent
pieces only contribute in higher orders of the density.

D. Formal Argument

The beauty of the Lorentz models is that the heur-
istic arguments of the preceding paragraphs can in a
simple way be paralleled by explicit calculations based
on (5.7) and (5.9).

Take an arbitrary term in the sum #'K?v [Eq. (5.7)]

22 To prove this result a general classification scheme of all
irreducible graphs, which is not available at present, would be
needed. See Sec. SE.
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FiG. 5. Uncorrelated virtual collision.

and consider the integrand with a fixed configuration
Q,, -',Q;, so that the path is well defined. Let
C*(i,)C*(i,) be two consecutive operators in the
product. Form the sum

Ciy) - - - C(iy,)
x [1 +n f '4Q,.C'(jy)

+ nzf,deIJ'Idezcv(jl)C”(jz) + - :I
X C™(i,) -+ C**(i )Gv. (5.13)

The first term reproduces the integrand considered.
In the second one, tree j; is not a member of the basic
set of / trees. Since the integration is restricted so that
the virtual collision with j, occurs between the
collisions with trees i,, and i,, the second term is part
of the sum n*+K}, v, although the path is exactly the
same as in the first term. In the third term none of the
trees j, , j, belongs to the basic set, and the integra-
tions are such that the virtual collision with j, occurs
after the collision with i,,; the virtual collision with
J» occurs after the collision with j;, but before the
collision with i, [see condition 4 on the sum in (5.3)
and (5.7)]. The third term is thus a part of n*+2K} v,
and in the same way one goes on.

All of the inserted virtual collisions are with trees
occurring only once in the complete integrand. We
call them wuncorrelated virtual collisions. They can
clearly be integrated over with the basic set Q, - - - Q,
(or equivalently the path) fixed, and since in these
dynamical contributions all g’s are replaced by unity
even in Case B, the inserted trees can freely overlap.
Thus the sum in the bracket of (5.13) reduces to

S2[-J oo o] ] oo

The restriction on the integration is the same as for
§" dQ, in (5.13). From Fig. 5 it follows that

f dQ = 2avr, + 0(@d®. (5.15)
Since, to O(p?) in y, we are only interested in the
most divergent parts of every formal order in #n, the
term of O(a?) in (5.15) can be neglected.

Clearly the sum in (5.13) can be inserted between
any two collision operators in the basic sequence
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without affecting the path. The result is a damping

exp [—2nav(ry + 75 + <+ + 7,)] = exp (—2navr),
(5.16)

on a path of length vr between the first and the last
collision in the sequence, precisely as anticipated from
the heuristic argument above.

Through this damping, one implicitly takes into
account all uncorrelated virtual collisions, so that
only real (r) and correlated virtual (cv) ones (ie.,
with the label “tree” occurring more than once in the
product of operators) should be taken explicitly into
account. With the approximation (5.15), (5.9) is
thus changed to
n"Riyv=n"3 (1)

rov

xf dblf"—f dQ,-+-dQe v, (5.17)

where V here is the number of correlated virtual col-
lisions, and we have gone to the limit ¢ — 0, since
all integrals now clearly exist in this limit. Note that
a single K2 contains parts from every K3 with m > I

E. Classification of the Most-Divergent Diagrams

As we remarked in Sec. 5C, all most-divergent
terms in a given formal order of n, after a resummation
contribute to O(p?) in y. Since the divergences in
(5.9) stem from the fact that an integration over an
infinitely long path leads to a factor 1/e, the topology
of the path corresponding to a given product of
operators in (5.7) is clearly essential. A classification
based on (5.7) and (5.9), of all paths according to
their orders in n and €, would therefore be desirable.
Such a general scheme is not available, and conse-
quently no criterion exists by which one can decide
whether all diagrams contributing to O(p? have
been found. The following classification of diagrams
with asymptotic behavior n'e~"-%) must be considered
with this qualification in mind.

Since intermediate virtual collisions do not in-
fluence the path, our classification is based on se-
quences of real collisions, except for Class I and a
corresponding part of Class III. The motivation for
this exception becomes clear later. The three contrib-
uting classes of most-divergent diagrams are then
given as:

Class I: Ring events, characterized by sequences of
collision operators (real or virtual) of the type
1,2, 3,:--, r, 1, rather than by a prescribed path.
The numbers label the trees in the collision sequence.
An example with r = 3 was shown in Fig. 4.

E. H. HAUGE AND E. G. D. COHEN
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FIG. 6. (a) Orbiting event with r = 4, p = 1, k = 3. (b) Retracing
event withm =4, r = 4.

Class 1I: Orbiting events, where the particle stays in
the “‘orbit” for an arbitrary number of additional
collisions, characterized by the following sequence
of real collisions: (1,2,3,---,r)?1,2, -+, k. Here
it is understood that: (1) r >4, p>1, 1 <k <,
and the case p = 1, k = 1 is excluded (it corresponds
to the ring R,); (2) the very first and the very last tree
in the sequence may suffer real or virtual collisions;
and (3) the basic sequence above may be decorated
by any combination of intermediate virtual collisions.
An example with r = 4, p = 1, and k = 3 is shown in
Fig. 6a.

Class III: Retracing events, with sequences of the
type 1,2,3, -, mm+1,m+2,---,m+r, m,
m—1,---,2,1. It is understood that: (1) m > 2,
r > 2; (2)the two collisions with trees 2,3, -+« ,m — 1
must either be both real or both virtual; (3) any
combination of real and virtual collisions with trees 1
and m is allowed (if all collisions with 1---m are
virtual and r =2, we get the exceptional path
identical with that of the ring shown in Fig. 4); and
(4) the basic sequence may be decorated by uncorre-
lated virtual collisions.

An example is shown in Fig.6(b),and the charac-
teristic feature is the double path between trees 1 and
4 along which several trees are encountered twice,
closed by a “reflecting chain.”

All three classes give rise to contributions of O(p?)
to ¢ and will be considered in the three subsequent
sections. There is also a fourth class which is a com-
bination of Class IT and Class III, but the correspond-
ing contributions cancel exactly.!?

6. CLASS I: THE RINGS

In this section we calculate the contribution of
O(p?) to y from the first class of most divergent
diagrams. We start by considering Case A, overlapping
trees, and the modifications necessary in Case B are
treated at the end of this section.

A. Overlapping Trees

The simplest ring R, with a collision sequence 121
[Figs. 1(a), 1(b)] is not a divergent diagram. It was
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already calculated in Sec. 4 as a part of y,. What we
are interested in then are the contributions yg, with
I=3,4,---, from the rings R, calculated to O(p?).

The straightforward way to do this is to specialize
the general formula (5.17) to the case of rings; for the
contribution to y from the rings with / trees, (3.12)
and (3.13) then give

vi, =nlav® 3 (=)

rings
‘v f db, f f dQ, - - - dQe®™y, (6.1)

where it follows from the conditions on the sum (5.17)
that here all intermediate collisions have to be real,
while the first and the final collision with tree 1 can
be real or virtual. The restriction on the integrations is
simply that the configurations must be such that a ring
event takes place.

Capitalizing on the fact that we are only interested
in yp, to O(p?), we can carry out the integrals. We do
not give details here, since the final result is derived by
a more elegant procedure in Appendix C. The results
to O(p?) are

Vs = P
y‘ldizp = 0’

Vaprs = 9225“”: (2p - 4) + (2p - 4)} (6.2)
p—2 p—1

o 4
Vi=2vm=—p" (6.3)
=3 o

B. Nonoverlapping Trees

Does it make a difference to O(p?), whether the
trees are allowed to overlap or not? For contributions
from events where all paths are integrated to infinity
the answer is no, since the difference between our
cases A and B becomes manifest only when the dis-
tance between two trees is of O(a). For all rings with
more than two real intermediate collisions, the
difference between yg and pE thus becomes of
O(p?), and therefore is immaterial in the present
context.

The preceding reveals the motivation for the
splitting of the K, operators into a “dynamical” and
a “statistical” part [Eq. (5.1)]. The hope was that the
dynamical terms with fewer restrictions on the inte-
grations would contain all of the most-divergent
diagrams, and therefore be the only important part to

0(p?).
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Fic. 7. Events contributing to y, .

The resummed ring R; (one example is shown in
Fig. 4) is an exception to this rule, however. Here
trees 2 and 3 are bound to be close together throughout
the integration, and whether the trees are allowed to
overlap or not does have an effect on the resulting
contribution. This distinction becomes the crucial
point in the calculation of the Class III events in
Sec. 8.

To calculate y%_, one needs simply to insert a factor

82,3 =exp {(—W?(2,3)} + 0(p)  (64)

into (6.1) with / = 3, rather than split into a dynamical
and a statistical part. The computation is straight-
forward; we only mention that now one has to
include the contributions from the events in Fig. 7
[their sum is of O(p®) in Case A], besides the one from
the event of Fig. 4.

The result of the calculation to O(p?) is

Vo = P’ (6.5)
and since
Ve = ya + 0, 1=4,5, (66)
it follows from (6.2) and (6.3) that to O(p?)
< 4 17
Y=2vh = (— - —) o~ (6.7)
=38 T 24

We finally remark that the difference between the
two cases A and B, to O(p?) for the rings, is a result of
the discreteness of velocity space in our model. With
circular scatterers replacing the square trees, there is
no such distinction.

7. CLASS II: ORBITING EVENTS

The next class of most-divergent diagrams listed
at the end of Sec. 5 consists of the orbiting events.
The orbit is determined by an even number 2r of
trees. In the example of Fig. 8, the trees 2, 3, 4, 5, 6,

6 5

& ;

7 2

FIG. 8. Orbiting event with r = 3, s = 11.
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and 7 define the corners in the orbit. All intermediate
collisions with the corners must clearly be real. The
very first and the very last collision in the sequence
may be real or virtual, however, and may occur at one
of the corners or along one of the sides (see Fig. 82%).
If the initial or the final collision is with a tree along
one of the sides in the orbits, all additional collisions
with that tree must be virtual. In Ref. 12 it is shown that
all other intermediate virtual collisions cooperate to
give a damping exp{—n[2a + (k — )x]L} on k
parallel paths on length L, and with a distance x
between the subsequent paths. These collisions should
not,therefore, be taken explicitly into account.
Defining s as the number of collisions in an orbiting
event in addition to those necessary to complete the
corresponding ring, we can on the basis of the above
discussion write the contribution of O(p?) from
Class Il to y as
[ ]
yi=> > T(2r,s).

r=2 s=1

(1.1)

It is easily seen on the basis of the discussion in Sec.
6B that y; is the same in cases A and B to O(p?).

Any term T(2r,s) can in principle be calculated.
Unfortunately, neither the general term T(2r, s5) nor
the sum y; is known explicitly. However, the follow-
ing partial results are available.

The first “row” of the double sum (7.1) is found to
givel?

Y40 = zl T(4,s)
o
= (0.0627 — 0.0238 + - - ')p2 = 0.0295p0% (7.2)

Using the operator Q (see Appendix C) to sum over
all uncorrelated intermediate collisions, one can also
find the two first columns!?

Yor=2 T(2r, 1) = +0.1118p%  (7.3)
r=2

Yoo =2 T(2r,2) = —0.0353p%.  (7.4)
r=2

To arrive at an order-of-magnitude estimate on the
double sum (7.1), we conjecture that the terms
T(2r, s) have roughly the same s-dependence for all
r,2* in particular that asymptotically for s> 1,
T(2r, s) ~ s~% [which is the asymptotic behavior of
T(4, 5)]. On the basis of this conjecture we find

PI1 ~ Y w.1V1.0l/ T4, 1) ~ 0.05p7 (7.5)

23 Note that at least one encounter with tree 1, in addition to the
initial real or virtual one, must be counted as a virtual collision;
otherwise the event would not be irreducible.

% Compare the two first terms in the sum (7.2) with (7.3) and

(7.4)
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or

7 < 0.1p% (7.6)

Clearly, the material available is not sufficient to
allow us to take the estimate (7.6) very seriously.?

Our discussion in Sec. 9 of the final result, however,
will be based on the conjecture (7.6). At this point
we only remark that one can look upon y;; as a
correction to the ring contribution; and comparing it
with (6.3) and (6.7), which numerically read

yi = 12732+ p, (7.7
yB = 0.5649 - - - p’, (7.8)

one finds that the correction from the orbiting events
seems to be an order of magnitude smaller.

8. CLASS III: RETRACING EVENTS

The retracing events form the final contributing
class of most divergent diagrams listed in Sec. 5 and
are considered in the present section. Again it is
convenient from a computational point of view to
start with the calculations for overlapping trees and
then treat the necessary modifications for Case B.

A. Overlapping Trees

The typical Class III event 1, 2,--+, m, m+ 1,
m+2,-+,m+4+r, m m—1,--+,2 1 naturally
splits into two distinct parts. First, a double path
from tree 1 to tree m along which the moving particle
retraces its previous steps. Second, a chain of uncorre-
lated collisions from tree m and back to the same
tree [cf. Fig. 6(b)]. Accordingly, the computation of
v is done in two steps. First, for any fixed double
path, the ring operator €2 introduced in Appendix C
is used to sum over all chains of uncorrelated collisions
between the two encounters with the final tree along
the double path. This sum can be represented by two
reflectors with certain weights. Then, using these re-
flectors, one sums over all possible double paths.

1. The Reflectoes

The sum over all chains of real and virtual un-
correlated collisions between the two collisions with
tree m is given by

"C<m>[§;*' f e f dQpr - dQy,,

X C(m +1)- - C(m + r)]C(m) = BQ.., Q..
(8.1)

25 Not even the convergence of the double sum (7.1) has been
proved; and it seems quite difficult to do so, since the binary-
collision expansion splits the Class II contributions into terms that
have to be partially recombined before a divergence-free summation
can be performed.
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FiG. 9. The reflector of type s.

That the sum starts at » = 2 follows from the obvious
fact that at least two collisions are needed to reflect the
moving particle back onto the double path. Chain
integrals like those in (8.1) are conveniently handled
by the Fourier technique used in Appendix C, and to
O(n?) one has'?

B(an Qm) = e_er”‘(-j(m)anz

Q(K,, Ky) f db.,C'(m).
(8.2)

(2 )2

Here C(m) = e<»C(m), and the matrix elements of
the dimensionless operator (K, K,)—where K, and K,
are the components of the dimensionless vector K
along the v, and v, axes, respectively—are given
in Appendix C. The prime is only used to distinguish
the variables characterizing the second collision with
tree m. In (8.2) the exponential exp {iarK - (o, — o))}
has been put equal to unity to O(n?) by the same
argument as used in Appendix C.

For actual computations we have to pick that part
of the operator B of (8.2) which reflects the particle
to make it retrace its previous steps from 1 to m. [Or
more formally, we are only interested in the matrix
element (C(m)QC’'(m)),5 of the operator product.] In
Fig. 9(a) are shown the four possible situations at tree
m when we insist that the particle hits the upper half
of the tree both in the first and in the second colli-
sion (same-side reflection: type s).

Below each combination of collisions with tree m,
the corresponding matrix element Q,, is given (when
v, in each case is defined as the direction of the moving
particle immediately after the first collision with tree
m). The sign depends on whether the real or the
virtual part of C(m) and C’(m) has been used.

The same combination of matrix elements occurs
when both paths touch the lower half of tree m,
leading to a factor 2. Since the integration over
Q,, leads to an integration over a collision parameter
b,,, we can write the integrations over b, and over
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b, in (8.2) as follows:

a (s) a
fdbmf db’,n---—+2fdx2(a—x)'--
—a P JO
2a
Ezf dxR(x)- - -
FJo

The restriction on the b, integration is such that a
reflection of type s occurs. On the right-hand side in
(8.3), we integrate over the width of the double path
and sum over the two “permutations” '_i: and i .
These two operations can only be carried out after the
weight of the double path is known, and thus are
postponed to Sec. 8A.2. The remaining factor R (x)
[defined by (8.3)] can then be combined with the 1, 3
matrix element of (8.2), without the b, integration,
to give the weight W4(x) of a reflector as shown in
Fig. 9(b), representing the sum of all chains with
overlapping trees leading to a type s reflection. To
0(n*) and in the limit € — 0, one finds

R,,(x)anzj‘i—zdw;K)2 (2Q
or by (C4)

(8.3)

Wf(x) = 13— Qi — Qq), (8.4

W4(x) = R (x)an’. (8.5)

A reflector of the second type arises from the four
possible arrangements when the first collision is with
the upper half of tree m, and the second collision is
with the lower half of tree m (or vice versa; see Fig.
10). The type d reflector has the property that the
two paths are connected with different halves, each
of width a [see Fig. 10(b)]. In this case, (8.3) is re-
placed by

a (d)

f db,, f db,, - - -

- 2a

+f dx(2a—x)---}

(8.6)

Combining the factor R,(x) as defined by (8.6) with

0 O B B

-Q -Q
12 (a) 12

; Wyq 3

— :
(b)

FiG. 10. The reflector of type d.
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the 1, 3 matrix element of (8.2), we find

dK
@2m)*

Wi(x) = Ryx)an® f (Qu + Qs — 204, (8.7)

in analogy with (8.4). By (C4)

Wi(x) = (3 — 7 HR(x)an’, (8.8)

so that by (8.5) and (8.8), all types of collisions with
the final tree on the double path, plus all reflecting
chains, have been taken into account.

2. The Double Path

What remains to be considered are all possible
sequences of collisions along the double path. In this
case it is convenient to use (5.9) as a starting point,
rather than to perform the partial resummation of
Sec. 5 separately. On the basis of (5.9) and the dis-
cussion in Sec. 8A.1, one can write the total contri-
bution to y from Class III events as

a 2q o
Y = a—zlim \} J db, ZJ dxf dL
V" -0 —a P Jo 0

X i nky+lz/ (_1)V+1j. . ‘f’dle e kop

kp=0

% exp (—e2L[o){Wy(x) + Wy(x)}v,.  (8.9)

Here 3, , sums over all types of collisions with tree 1
and all allowed combinations of the k,, collisions along
the double path of total length L, such that the
double path is not destroyed. The integrations over
{Q,, ' - - Qy,} are restricted accordingly.

Consider first the collisions with tree 1. The two
possible configurations are shown in Fig. 11. (The
initial velocity can be chosen arbitrarily.) The real
collisions consistent with a given double path are
drawn with full lines, the virtual ones with broken
lines. Since only the dot product contributes to y, we
are left with the combinations real-real and virtual-
virtual. These two terms give rise to a factor 2 in Fig.
11(a), whereas they cancel in Fig. 11(b). Consequently,
we need only consider double paths of width 0 <
x < a. Furthermore, with the configuration in Fig.
11(a), 3 p simply gives rise to a factor 2, and at fixed

double path

(R s,

double path

(a) (b

Fi1G. 11, Collisions with tree 1.
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F1G. 12. The double path.

x, the b, integration yields the factor 2(a — x), so that
(8.9) reduces to

7m = 8alim odX(a — X)[W(x) + Wy(x)]
X fde exp (—e2L[v)
0

Xlgonkﬂ rzv’ (_I)VJ" : 'fldQ1 © 0 dQy,
' (8.10)

where we have dropped the subscript p on the labels,
since the collisions with tree 1 have now been taken
care of, and all that remain to be considered are those
along the double path itself.

To simplify the picture one can clearly deform the
double path into a straight one of total length L,
without changing the lengths of the paths. On the
basis of (5.7), then, five types of collisions along the
double path are possible (see Fig. 12):

(1) Uncorrelated virtual collision on the upper path.

(2) The same on the lower path,

(3) (Correlated) virtual collisions on both paths
with the same tree.

(4) Real collisions on both paths with the upper
half of a given tree.

(5) The same with the lower half.

(Note that with a type 1 or type 2 collision the tree
can be penetrated by both paths, although only one of
the encounters is taken explicitly into account.2?)

The sum over all possible collisions (at posi-
tions ;, , - - -) atong a double path of length L and
width x (< a), is to lowest order [cf. (5.15)] given
as

ky! -
( > ka)

=1
L L L
xf dl1f dly - - f dl, [—2anT'[—2an]*:
1] Iy H

x [(2a — x)n]*[(a — x)n}*{(a — x)n]"*
(8.11)

This “superdamping” can be interpreted as the

= exp (—3nxL).
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probability that a double path of width x is not split
up over a total length .28

Inserting (8.11) in (8.10), one can perform the
L-integration and go to the limit ¢ — 0. With x = a§,
the final integrals yielding the two Class III contri-
butions with overlapping trees read [use (8.3)-(8.8)]:

= 8 J dE&(1 — &y, (8.12)

A=21__1§f —
V2 p(2 W)3 dE(L— §)

The first integral diverges logarithmically as & —0;
however, the second one is finite:

(8.13)

4 =31 — 277N (8.14)

We postpone a discussion of this divergence to
Sec. 9, and first compute the corresponding quantities
with nonoverlapping trees.

B. Nonoverlapping Trees

It follows from the discussion in Sec. 6B that the
only terms in the sum (8.1), which depend on whether
or not the trees are allowed to overlap, are those with
two real collisions between the encounters with tree
m. From the same discussion it is also clear that the
double-path calculation to (8.11) remains valid to
O(p?) in Case B. One therefore calculates the Class
IIT contribution with nonoverlapping trees in two
steps. First, the terms representing the exceptional
events are subtracted from the operator Q, and the
corresponding reduced weights W% and contributions
to y are computed. Second, the case of exactly two
real collisions in the reflecting chain is treated sepa-
rately.

(1) The reduced weights are easily found to be
[compare (8.5) and (8.8)]:

WE(x) =0, (8.15)
WB(x) = —(z~! — DRy(x)an®.  (8.16)

Two remarks are in order. First, the crucial fact that
the entire weight of the s reflector in Case A (8.5)
stems from that part of the Q operator which corre-
sponds to two intermediate real collisions, is a conse-
quence of (8.15); it can also be checked directly.
Next, from their definitions it follows that the weights
W can be of either sign, depending on the prevalent

26 An immediate ‘““physical” argument (nof based on the binary-
collision expansion) supports this interpretation. There are three
ways of splitting up a double path: (1) the first path is broken by a
collision, but not the second; (2) vice versa; (3) both paths are
broken, but on different sides of the tree. All three possibilities
contribute xn to an ‘‘absorption coefficient” and hence (8.11)
follows.
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——

-

3 3
FiG. 13. The exceptional event in Case B.

type of collisions. W4 is positive, whereas W2 is
negative.

The contributions to y5; corresponding to (8.15)
and (8.16) are

(8.17)
(8.18)

7? =0,
— Dp’.

(2) Finally, one has to consider the situation
shown in Fig. 13. The weight associated with the two
nonoverlapping trees 2 and 3, serving as a reflector in
this case, is found by integrating over Q,, Q; at
constant x, L. Thus,

wE(x) (8.19)

With the weight (8.19) we repeat the argument of Sec.
8A.2 and arrive at the following contribution to y:

Ve = —¥d4n

= (ax — x*/4)n’.

1
B =8 f dEEN (L — E)(E — E4)

— 11 .2
=P

(8.20)
This result, however, contains the contribution from
the ring R, in addition to those from the Class III
events, since the sum (8.11) also includes the case of
all collisions along the double path being uncorrelated
virtual ones. The ring part of (8.20) [which is found by
replacing §£7 by }in (8.20)] is given by (6.5), and must
be subtracted when we are interested in the Class III
contribution only. Altogether, one finds to O(p?) that

YR =ve + i+ vE — vE.

yin = (8 — $7H)p% (8.21)

Thus the retracing events give rise to a finite
contribution to y with nonoverlapping trees, whereas
with overlapping ones the corresponding integral
[(8.12) and (8.13)] diverges logarithmically. The
physical meaning of this qualitative difference is
discussed in Sec. 9.

9. DISCUSSION

The results of the preceding sections are summarized
in Table I. Below we first discuss the “physical”
reason for the divergence of y#;. Subsequently the
long time behavior of the diffusion process in the two
cases A and B is considered on the basis of the results
of this paper. We close with some final remarks.
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TasLE 1. Contributions to y = av/2D.

Derived Case A: Case B:
Name in Sec. overlapping trees nonoverlapping trees
9(p) Y1 4 2p 2p
O(p% V2 4 (@*[9)p* = 1.097 p* (/9 + 4)p® = 5.097p*
Y1 6 (4/m)p* = 1.273p? @/m — 17/24)p* = 0.565p*
YIr 7 < 0.1p% < 0.1p*
guil 8 In oo - p? (91/72 — 4/3m)p?* = 0.839p*
Sum - (%9 + 8/3m + 41/9p* + 711
0(p?) Ino-p = 6.501 p* + (<0.1")

A. The Divergence of i

To get a better “physical” understanding of the
divergence in the resummed theory discovered in
Sec. 8, consider a particle moving around in the
“forest” of trees. During a time interval of order
vla~%n~2, the particle will probably encounter two
trees very close together. Given that they are close, the
probability is of O(1) that they are arranged in such
a way that the particle is reflected more or less
precisely onto its previous path (see Fig. 14).

The probability that the two paths, distance x
apart, stay together over a total length L was, in Sec.
8, found to be exp (—3nxL). Whether this type of
event will qualitatively alter the nature of the diffusion
process depends on the outcome of the competition
between the small phase-space associated with the
reflector, and the long “memory” associated with the
narrow double path. The memory associated with this
excessive back scattering extends over a time of the
order (3nxv)~! which tends to infinity as x — 0. With
nonoverlapping trees, the phase-space associated with
the reflector [~ the weight W2 of (8.19)] goes down
linearly with x when x — 0. With overlapping trees,
however, this phase space is independent of x. The
result of the competition in the two cases can be seen
from (8.12) and (8.20). The corresponding contri-
bution to the inverse diffusion coefficient is well
behaved in Case B, while it diverges in Case A.

B. The Long-Time Behavior

To understand the qualitative significance of this
divergence on the long-time behavior of the diffusion

o TP
5 &

FiG. 14. Retracing event with real collisions only.

process described by the fundamental equation (2.2),
we go back to (8.10) and keep € small but finite. With
finite €, Eq. (8.11) has to be replaced by

exp (—3nxL) —exp (—3nxL — ¢-2L[v), (9.1)

so that it follows asymptotically from (8.10), using
(8.5) and (8.8), that

v ~ —(8p%3) In (2¢/3nav) + finite terms of O(p?).
9.2)

With (2.2), (2.3), (3.1), and (3.12), it follows from
(9.2) that with overlapping trees the mean-square
displacement asymptotically obeys the relation

dA4(t){dt ~ 2av[2p + (8p°) In (3navi)
+ terms of O(p®) finite in the limit t — o]
©.3)

The dominant behavior for very long times follows
immediately as

A4(t) ~ Ga/dpdtIn 1. 9.4)

The asymptotic growth of the mean-square dis-
placement is therefore slower in case A than in a nor-
mal diffusion process. However, the anomalies
become substantial only after times T of the order
[see O3 7o @nav) exp 3p)

= $rexp (p), 9.5)

where 7 is the mean free time which follows from the
Boltzmann equation.

The above discussion was based on the divergent
contribution of 9(p?) to . The precise form of the
asymptotic behavior (9.4) and the corresponding time
scale (9.5) would probably have to be modified if
terms of higher orders in p were taken into account.
The gualitative point, however, that the diffusion
process is slower in the anomalous Case A than in a
normal diffusion process, is seen to depend on the
existence of the divergence only, not on its precise
nature.
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In contrast to Case A, Case B represents perfect
normality up to O(p?). The growth of the mean-
square displacement is therefore

AB(t) ~ 4Dt

where the contributions to av/2D¥ of orders p and
p? are given in Table I.

C. Concluding Remarks

(A) Within the framework of our present calcu-
lation to O(p?), it makes a qualitative difference as
far as the diffusion process is concerned, whether the
trees are allowed to overlap or not. It is an open
question, however, whether this difference persists to
higher orders, since:

(i) We have no proof that in a complete theory,
y4 does not exist in the limit e — 0, and that the
divergence in y4 of Q(p?) is not an artifact of the
expansion in powers of p.

(i) We do not know whether y? remains finite in
higher orders than O(p?).

From the computer study of the wind-tree model by
Wood and Lado,'* however, there are strong indica-
tions that our results are indeed qualitatively correct
not only for very small p.

(B) The questions above are intimately connected
with the following: What is the precise asymptotic
behavior of A4(¢) for long times when higher orders in
p are taken into account? .

(C) It is worth noting that at very high densities a
qualitative difference of a second kind between the
two cases becomes apparent. With overlapping trees
there is always a nonvanishing probability that a
moving particle started in a random position between
the trees is trapped in a finite volume. In such a case
the displacement can never exceed finite bounds and
nothing resembling a diffusive process is ever realized.?”

(D) We would like to stress that both types of
divergences discussed in this paper point to a deeper
physical insight into the problem of kinetic theory.

(i) The divergences discussed in Sec. 5 seem to make
a non-Markovian description of the kinetic stage (in
the Bogoliubov scheme, ¢ < mean free time) necessary,
This point has not been discussed in the present
paper.

(ii) It follows from (9.2) and (9.4) that the diver-
gences in the resummed theory in Case A qualitatively

2" For low densities the probability of starting in a trapped
position is clearly of O(p‘) in our model; and in analogy with the
percolation problem, it is tempting to conjecture that this proba-
bility will increase with p and be unity above a certain critical
density p,, which then defines the end of the diffusive regime.
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affect the hydrodynamical stage (f 3> mean free time).
The diffusion equation is clearly not valid in Case A.

The divergences of the first type are essentially
model-independent; therefore, the conclusions drawn
from them have a bearing on the general case. The
divergences of the second type seem to be closely
associated with special features of our model; their
importance to kinetic theory in general is therefore
less clear.

(E) In this connection, however, we point out that
it should be interesting to see if a microscopic inter-
pretation in some way analogous to that of (9.4) can
be given to the vanishing of the mutual diffusion
coefficient in a binary mixture at the critical point.
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APPENDIX A

In this appendix we first give some of the details in
the derivation of (3.13), then go on to derive a formal
density expansion of the operator XK.

Inversion of Equation (3.3)

One first rewrites (3.3) as follows:

61 = Go[l + B(v, €, n)lv, (A1)
where

Gov = [e — ()] v = €y, (A2)

by the definition (3.4). It is easily seen that a direct
expansion of the operator B(Y, €, n) in powers of the
density gives rise to divergent terms in the limit € — 0.
Following Zwanzig,® we therefore invert (Al) to get

v = [l + B(v, e, n)]G5'd,
= [G5" + K(v, &, n)]®,, (A3)

and subsequently study the power series expansion of
the operator K. By this procedure the most divergent
terms in the expansion of B are removed. Although it
is shown in Sec. 5 that the density expansion of K
still contains divergences, we adopt it as a basis for
resummations.

To express the diffusion coefficient in terms of K
we first note that for reasons of symmetry we can
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write”: 7

$v, ) = vé(o), (A4)
and since the operators in Lorentz models act only on
the direction of v, as the absolute value v of v remains
constant, (A3) gives

v = $(IGs* + KIv. (A5)
Multiplying (AS5) from the left by v and using (3.2) and
(A4), one finds

1 = lim 207 %ev® + v - Kv),
[3ad]
so that introduction of the dimensionless quantity
y(¢) defined by

y(€) = av=3v « K(v, €, n)v
gives, finally,

(A6)

(A7)

1 = 2a7 v lim y(e).

€=0

(A8)

Formal Expansion of X

We are interested only in the first correction to the
Boltzmann result for the diffusion coefficient. How-
ever, as a consequence of the above-mentioned
divergences, one can only hope to get systematie
results to this order in the density after a classification
of the general term in K, and a resummation over
certain classes of terms. The remainder of this
appendix is consequently devoted to combinatorial
aspects of the expansion problem. The goal is to
derive a formal density expansion of the operator X
in (A7), and thus of the inverse diffusion coefficient.

The starting point is the cluster expansion of the
operator G(1 - -+ N) in (3.3) (the arguments x and e
are henceforth suppressed, and the & position vectors
of the scatterers are replaced by the set of numbers
labeling them):

Gil---N)= ¥ U({4},

{4}<{L, - . N}
where the sum goes over all subsets {4} of the set
{1, -+, N}, and the empty set is included [G({0}) =

G, = U,]. The inversion of (A9) reads
ua---m= 3 (=)"Y6({4),

{d}={1, -+, m}

(A9)

(A10)

where v(4) is the number of elements in the set {4}.
For m = 1, 2 this means that

U(l) = G(1) — G,,

U(12) = G(12) — G(1) — G(2) + G,. (All)
Defining the reduced distribution functions
n'g(r, 1,- -+, D)
VN!

. Ve N—1 N
Jim f f dQNp(r, QM), (A12)
N/V=n 1 4
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one can write (3.3) as the formal power series

61=[Go+§’l’—:f---fdgl

x g, 1, -+, HU(, - ,l)]v. (A13)

This is not yet a bona fide series expansion, since:

(i) the terms blow up in the limit € — 0;
(i) the reduced distribution functions are, in
general, complicated functions of the density.

However, one can still regard (Al3) as a formal
density expansion of the operator B in (Al) with
coefficients B;:

B anla

G‘Tlf---fng(rl

An expansion of the operator K in (A3),

, DU, -+, D. (Al4)

K =>nK,, (A15)
=1

which is formal in the same sense as (A14), is obtained

from (A1) and (A3) by the requirement that

0 ) -1
S+ 2K, = [1 +3 nlB,] Gy (Al6)
=1 =1
should be satisfied to every formal order in n. From
(A16) one can derive!? the following explicit expression
for K; in terms of the B;’s:

4
Ky=2(=D"3'B,, - B,G"  (AlT)
n=1 {a}
> ag=1
i=1

where the primed sum is over all products of B,’s such
that the sum of their subscripts (positive integers)
equals /. For I = 1, 2, Eq. (A17) reads
K, = —'BlGEl’ (A18)
K, = —B,G;' + B,B,Gy, (A19)
and using (A7) and (Al4), one finds that the corre-

sponding contributions, y;(€), ya(€), to y(e), can be
written

7 = —nav-ter- [ dQuate, DD (A20)

yal€) = —nlavev - f dQ, dQule(, 1, 2)UG(12)

— g(r, YC(Dg(r, 2)C(2)
- g(l', 2)C(2)g(r, I)C(l)]vs
where we have introduced C(i) = U())G;.

(A21)
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APPENDIX B: THE BINARY COLLISION
EXPANSION

In this appendix, some of the steps leading to
(5.2) and (5.3) are sketched.

The C Operator
The binary-collision operator C(1) is defined by
C(1) = UG = [G(1) — GolGy'. (B
By (3.5), for any function F(v, r) one has
eX@E(y, r) = F(v,r + vi)
so that, by (3.4),
Gy'F(v, 1) = [¢ — B(X)]F(v,1) = (e -0 g;)F(v, .

(B2)
The result of [G(1) — Gy] acting on G;lF(v,r) is
again given by (3.4) as

CU)F(y, ¥) = f :odte‘“{ [e —v,- 5%—] F(v, R,)

0
—|le—v-=|Fv,R)!, (B3
[e vaR](v )} (B3)
where v;, 7, are defined as in (5.2), and where

Ri=r+v+vit—7);, R=r+vt
The integrand in (B3) can be rewritten to give

C(1)F(v,r)

® 0
= | dte|e — =
J;x ¢ (E 8:)
X {F[vy,r + vry + vi(t — 7)] — F(v,r + vt)}
@ d
=| dt|— =)
Jra(=5)e0
= e "YF(vy,r + vr)) — F(v,r + vry)},
which is precisely (5.2).

(B4)

The Expansion

The steps leading to (5.3) can be summarized as
follows (for details, see Ref. 12):

First, the G operator of (3.4) is expanded in terms
of the C operators:

G m [1 +3 z Cliy) -

p=1 1
(1,2))

C(ip):l GO ’ (BS)

28 Note Added in Proof: In Ref. 12, C(1) as given by (B4) is
erroneously identified with G,U(1) instead of U(1)Gz*. No results
are affected by this error, but in a number of equations Go and G;*
should be commuted with the other operators present. We are
indebted to Dr. M. H. Ernst (private communication) for having
pointed out this error to us.
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where the primed sum is over all products of p binary-
collision operators subject to restrictions (1., 2.):

(1) Alllabels i, - - - i, belong to the set {1 + - - m};

@i #iy,n=1,---,p—1

Second, the expansion (B5) is inserted into (A10)
to yield

G, S EOR

p=m {i}
(1.2.3.)

Ul - =

- C(i,), (B6)

where the additional restriction on the primed sum
reads:
(3) All labels in the set {1, - - -
once in the set {i;, ", iy}
Equation (B6) constitutes an expansion of the
“dynamical” part of the B, in (A14), since

‘}=-— f f do'cu(l, -+, 0.

The third and final step is to go from the B%s to the
K®s by (A15). Using (B6) one obtains (5.3), where
“irreducible” is defined as follows:

A sequence is called irreducible if it is impossible to
insert a partition at any point in the sequence in such
a way that there is an element that occurs on one side
of the partition only. Thus the sequence 12123 is
reducible since it can be partitioned (1212/3), while
the sequence 1212 is irreducible.

, m} occur at least

(B7)

APPENDIX C. FOURIER TRANSFORMS

In this appendix we shall rederive the result (6.3)
by a technique which is useful whenever intermediate
chains of uncorrelated collisions should be summed
over. The case of rings will be treated as an example,
but only slight modifications are necessary to apply
the same method to similar problems encountered in
Secs. 7 and 8.

In the ring case, the starting point for this method is
(5.3), and denoting the ring part of X3 by R, one can
write

n'Ry = —en’ f e f dQic(1) - - - C(HC(Lv. (C1)

Since the integral is of the convolution type, it is
natural to introduce Fourier transforms. It is shown
in Ref. 12 that by performing a scaled transform on
(Cl), and subsequently summing over / from 3 to
oo, one arrives at (in the limit € — 0):

a e e
gan’Rlv = —qun® f ~I‘dbl db; ff % e®enrd(])

x QK , Kp)e ®ranC(1)y, (C2)
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F1G. 15. The initial and final collisions in a ring event.

where o, is the vector from the center of tree 1 to the
point on the edge where the first collision takes place,
and b, is the corresponding impact parameter. The
primes are used throughout to distinguish the variables
associated with the second collision with tree 1 (see
Fig. 15). The C operator is defined by [see (5.2)]:

c(1) = e (). (C3)

The dimensionless operator Q(K;, K;) can be given
the following 4 x 4 matrix representation with the

four allowed velocity directions vy, * * * , ¥4 (vg = —Vy,
v, = —V,) labeled in counterclockwise manner as a
basis:

Q= 472 + iKy)(4 + K)),
Q= A_l4(2 + iKy),
Q5 = A“l(z — iK;)(4 + Kg),
Qyy = A742 —~ iKy),

(C4)

with
A = [K3KE + 4K + KD)I[2 — iK,][4 + K3,

and with
K = Klv~1vl + sz‘.IV2.
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The remaining matrix elements are obtained by
cyclic permutations on the four indices (i.e., X; — K,
K, - K; = —K,, etc.).

From (3.13) and (6.3) it follows that

0
yii=av™v: 3 n'Ry,
1=3
and to extract the part of O(p?) from (C5), (C2), we
first observe that y{l depends on 7 in two ways only,
through the factor »? in front, and through the factor
n in the exponential. To O(p?) we can therefore put
the exponential equal to unity, provided that the
resulting integrals are finite.
The next step is to observe that whatever the results
of the preceding operators,

(C5)

f db;C'(1yy = | dbjC"*(1)v = —2av. (C6)

Since the exponentials in (C2) have been put equal to
unity, one can use (C6) and an equivalent argument
on C(1) to obtain

o0
7‘14 = —7 2% -deKl dK,Qy. ChH
—©

By (C4), Eq. (C7) reduces to

7= ”_2a4n2fde1 dK3(Qy5 — )

= (4/m)p",
in agreement with (6.3).

(C8)
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Two iterative solutional procedures are reported for the nonlinear integro-differential dynamical
equation obtained previously by the stationary functionality method and supplemented here by a sub-
sidiary dynamical condition. Rapidly convergent for grid Reynolds numbers between about 100 and 300,
both methods yield general expressions for the two-point equal-time velocity-correlation tensor:in
approximate agreement with experiment for the initial period of decay.

1. INTRODUCTION

A purely deductive approximation theory for
incompressible fluid turbulence has been reported
recently,'2 a theory based exclusively on the Hopf
characteristic functional space-time formulation and
free of any additive statistical postulate. With the use
of explicit functional integration techniques, a
nonlinear integro-differential dynamical equation
for the two-point velocity-correlation tensor was
obtained by evaluating A,,(x’, x"), the real symmetric
solenoidal two-point tensorial stationary functionality,
with a zero-mean velocity-field Gaussian approxima-
tion for the characteristic functional, and by equating
the resulting expression for A, (x’, x”) to zero. The
nonlinear integro-differential dynamical equation so
obtained was noted to be identical to a specific two-
point Navier-Stokes expectation-value equation with
a zero-mean velocity-field probability distribution
such that the fourth-order velocity-field product
expectation values are related to lower-order product
expectation values in the same way as for a zero-mean
Gaussian probability distribution. Specialized for
isotropic homogeneous turbulence, the nonlinear
integro-differential dynamical equation was shown to
take the form

2 2 a\@
[at'at" - ”(at' + at") PR
+ 2 — 6r f nls, 0, )52 ds = 0, (L1)

(Ve AV
ar[ or? r or :]’ (12)

the two-point velocity-correlation tensor being ex-
pressed in terms of the scalar function

§=&(r,t',t")y = &(r, 1", 1)
(regarded as an even function of r) by
WY N= flx', X)) = 8,V — £,,, (13)

! G. Rosen, Phys. Letters 25A, 644 (1967).
? G. Rosen, Phys. Fluids 10, 2614 (1967).

. ]az(re)
ort] or’

with
n=n(t, 1) =

where

"

r= (rara)%, Ty =X, — X,

and
_0¢ r,0¢ V= o°

- oror,

In the present paper we supplement the dynamical
equation (1.1) with a subsidiary dynamical condition
of the form

o€
-2
(at'at'
which implies that
E=E&r ' t") = E(r,t) + (t' —t")(r,t',t"), (1.6)

where ¢ = }(¢’ + ¢"), &(r, f) is an arbitrary function,
and {(r, t’, t") vanishes for ¢’ = ¢”, but is otherwise an
arbitrary function. Observe that if (1.5) is satisfied as
an initial condition at ¢t' = ¢” = 0, then Eq. (1.5) can
be expected to hold for all ' =¢” > 0 because this
subsidiary dynamical condition is compatible with
Eq. (1.1) for all ¢/, t” > 0. By substituting (1.6) into
(1.1), putting ¢’ =1¢", and using the condition
{(r,t,t)=0, we find the associated dynamical
equation for & = £(r, 1):

[13_2 _,2@ yz_ai]iz(_@
4 0t® ot or® ort] or?

+ 27 — 6rf fi(s, )s2ds =0, (L.7)

(14

0°¢
or'ot”

0%t
or"or”

)M= 0, (L5

with

E (QAV3E oF
7=t 1) = a_f(a (V) _ v

or\ or or ) (1.8)

Note that the two-point equal-time velocity-corre-
lation tensor

fuv(x,$ x”)lt’=t"=t = 6uvv2§ - ‘E,uv (19)
follows from a solution to Eq. (1.7). The purpose of
the present paper is to develop systematic approxi-
mation methods for obtaining solutions to the non-
linear integro-differential dynamical equation (1.7).
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Two iterative solutional procedures are given for Eq.
(1.7) in the following sections, the first procedure
being based on the similitude invariance of Eq. (1.7)
and the second on the quasilinear differential struc-
ture of Eq. (1.7).

2. APPROXIMATE SIMILITUDE SOLUTION
OF EQ. (1.7)

Let us assume that &(r, t) has the form

E(r, 1) = vo(), 2.1
where « = r/(»t)}. Then Eq. (1.7) becomes
3 ad d? «d &\
( taan T doc)( tadn s 2)da2“w(“)
2d
=24 ["rw Btsw ) - 6p0®)
+ fw”(B) + Fo" (Bl df = (w). (2.2)
Introducing the differential operator
o d d?
=-—4+—, 2.3
4doa  do® 23)

it is readily verified that the solutions of the eigenvalue
equation Af,(a) = 4, f,(«) for eigenfunctions f,(«),
such that f,,(4c0) = 0, are given by

( e n=0,1,2,, (24
o

where H,,(oc/\/ 8) is the nth Hermite polynomial ex-

pressed as a function of oc/\/ 8, and the eigenvalues of
A are

Jole) =

A= —i(n + 1). 2.5)

Notice that w(a) must be an even function of « since
&(r, 1) is regarded as an even function of r; from this
it follows that I'(e) must be an odd function of «.

The right side of (2.2) is now expanded in terms of
the odd eigenfunctions of A as

(o) = ZAnfznﬂ(“) EA Hypia ( \/8) 1B, (2.6)

The A4,’s are computed by using the orthogonality
properties of the Hermite polynomials, and we obtain

An = 22nHi(op i 1)v(2w)%f FH 2"“(\/8) da.

2.7
By putting (2.6) into (2.2) and integrating, we find
2 . Q) ,—¢"/8
_d_2 xo(x) = z AnH2n+1(a'/\/8)e . (28)
do 1=0 (A1 + PAznss + D

An arbitrary linear combination of fy(e) and fy(),
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eigenfunctions of (3 + A)(} + A) with eigenvalues
zero, does not appear on the right side of (2.8)
because w(«) is an even function of «. Inserting (2.5)
into (2.8) gives

4 16A4,H,, (2/\/8)e"1®
2 oza)( ) = z 2 +1( /\/ ) (2.9)
do n=0 (2n + 1)2n — 1)
From the Hermite polynomial definition
Ho(x) = (=1)7e” 4 (2.10)
dx"

we have

o\ 2
Hypiy (ﬁ) et =

2
8 d—‘i—z Hy, o (i_) e p> 1.

NG

(2.11)
Therefore, substituting (2.11) into (2.9) leads to
d d® © 1284, H,, 1(a//8)e "
- ota)( ) _ _2 z 2 1( /\/ )
do din=1 2n+1)2n —1)

d —12/8

+32/24,—¢ (2.12)
do

Equation (2.12) is integrated subject to the condition

lim ow(e) = 0, (2.13)

[ Aad =]

with the result that

128 2 A,H,, (/B
o) = han = 1)
334,

o

f e dy. (2.14)

To ensure that w(«) remains finite at « = 0, we must
have 4, = 0. But by (2.7), this condition is equivalent
to the requirement
f al’(e) da = 0, (2.15)
0

which follows from the second and third members in
(2.2). Hence, w(x) may be expressed as

ApHan oo/
(o) = 21 Cn + D2n — 1)

An iterative solutional procedure for Eq. (2.2) goes
as follows. Suppose that w'¥'(a) is the Nth approxi-
mation to w(«x); then substituting w‘¥(«) into the
right side of (2.2) gives the corresponding approxi-
mation for I'(x), namely '™ (a). Putting '™ («)
into (2.7) enables one to calculate the 4{”’s which are
substituted into (2.16) to yield w®™+V(«), the

(2.16)
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(N + Dth approximation to w(«); that is,

o 40 =8
a)(N+1)(oc) — _1_2_8 S Ay H2,,_1(cx/\/8)e (2.17a)
@ a1 (2n 4+ D@2 - 1)
with
" . 1

n

L "IN ()H,, (:}‘%) da.

(2.17b)

2272y + 1)1 2m)t

If @™(«) is expanded in terms of the even eigen-
functions of A, then the coefficients of the expansion
are related to the A¥"s, To develop equations which
give the A2Y’s explicitly, first note that the definition
of I'(a) produces

o®IV(a) = —6R(x) + 6aR' (o) — 20ER"(), (2.18)
where
R(@) = o' (&) [6w' () — 6w (o)
+ 2w (@) + BPo” ()] (2.19)

Next, substitute Eq. (2.6) into the left side of (2.18),

multiply both sides of (2.18) by Hzl(oc/x/ §), and finaily
integrate over « to obtain

1 o0 o0 o« a
~ T ,glA"_[_w“sH 2ntd (ﬁ) H,, (?;%) /8 dy

= f_ Z [31{(«) _ 30(%12(0:)

+o2 L R(a)]Hm(i‘.-_) de. (2.20)
do® \/ 8
Apply the identity xH(x) = kH,_;(x) + }H1(x)
to the right side of (2.20), integrate by parts, and use
H,(x) = 2kH,_,(x) to get
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with
© 2
T = f x*H(xX)H(x)e ™ dx

= 2 (mldak! Opers + fok! (K — Dip s
+ Sk1(2K® + 1), 514
+ 5(k + DI Q2K® + 4k + 3)0 .1
+ 8k + 3!k + 205+ (k + 5)! b5,

(2.22)

where .
_ (1 for i=},

Tlo for i -
From (2.22) it follows that

ZIA"J 2n-+8,21 = E_:OA(n+z-4)J 2(n+1)-5,21* (2-23)

If w(e) is expanded in terms of the even eigenfunctions
of A, then

5

0(0) = 3 by fonl®) = 3 bayHa, (i-) =8 (2.04)
n=0 n=0 \/ 8
Therefore
e—a2[4 -3 o «
R@ === 3 bunBuHinss (\_/i) Haopr (:/%)
where (2.25)

By, = 3bans + 2031 + Dby, s
+ H6n 4+ D2n + by, s + 2021 + 3)(2n + 5)b,,.
Substitute (2.23) and (2.25) into (2.21); the result is

5
3 2\/§ E_:OA(n+z«4)J 2(n+11—5,31

= 2 bymBaal4(1 + I + 2)I2m+1,2n+1,2l

m,n=0

+ 16[(1 + 1)(21 - 1)I2m+1,2n+1,2l—2

—32§An"2n+3,2l + 161(’ - 1)(21 - 1)(25 - 3)Izm+l,2n+1,2t—4]
- = 0(b), (2.26)
— f [(2: + )21 + 2)Hy, (%) where
8i(21 )21+ 2)H * Lemi1ant1,oe = f Hyp 11 () Ho,1(x)H, 21:(3‘)3“%2 dx.
+ 8121 — 1)1 + 2)Hy, (-:) -
w \/ 8 With the help of (2.27)
+ 821 — 121 — 2)(2] — 3)Hay 4 (-‘i)] R(x) da, et § Has"
\/ 8 n=0 n!
(2.21) Egq. (2.27) becomes
N
Lymir,2nin,o0 = (5) @m + 1)! 2n 4 1)} 27rmiet
w1 (=1)P(2r)! 27
m>n.

X
rzmz—:wk{m+n+k+1——r]![r+(m-—n+k)]![r—(m-——n+k)]!r!’
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Note that the condition m > n entails no loss of
generality. In the Nth approximation, (2.24) becomes

0 ™(a) = 3 b fon(a); (2.28)
n=0
then, from (2.26),
_ 5
328 X Al stnn—s = QO™ (229)

As an illustration of this iterative solutional pro-
cedure, we consider the first approximation to w(e):

©P(@) = —ce ™, ¢ = constant.  (2.30)
Then from (2.30) and (2.2) we find
2
M) = —— (72« — 170° + }o%)e™="%.  (2.31)
256
Hence it follows from (2.17b) that
2¢ __1\nH—3n,
A(l) — C( 1) 2 (5 + 2”) , n 2 1. (232)

T 128(n — 1!

We now combine (2.17a), (2.32), and (2.1) to obtain
- v2c? i (=1)"27%"(5 + 2n)

« n=1(2n + 1)2n — )(n — 1!

X Hyys (—“:) 8 (2.33)
V8

where £, is the second approximation to £. Equation
(2.33) leads to

@ — yv2 27 —1)"(5 + 2m)
ks ) = 2V, = 4oct El n + D2n — Dn — D!

o
X Hypo( ) e, (2.34
2 +1(\/8) ( )

and therefore

@ ve? & 275 + 2n)(2n)
w0, 1) = 421 Ex @n—-1Dn—-D'n @39
where we have used
Hyrni(®)|  _ 2(—1)"2n + 1)(—2n—)!. (2.36)
x oo n!

Observe that the ¢! dependence of the turbulent
kinetic energy, proportional to the quantity (2.35), is
characteristic of the initial period of decay observed
experimentally.?

Since the infinite series in (2.35) has the approximate
value 2.83, Eq. (2.35) may be written

20, 1) =< c*v/2t. .37
We compute f 1)(0, ¢) from (2.30) and find
@00, 1) = 3(cv/D). (2.38)

# G. K. Batchelor, Theory of Homogeneous Turbulence (Cam-
bridge University Press, London, 1960), p. 134.
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Comparing (2.37) and (2.38) we see that if ¢ =~ 3, we
have rapid convergence of the iteration procedure for

@0, £) = f1(0, 1) =~ 9y/2t, (2.39)

a relation which would hold experimentally for a
grid Reynolds number* UM/v ~ %a. An approxi-
mation for the two-point velocity correlation tensor
is given by
e Be (=125 + 2n)

at ==1(2n + 1)(2n — 1)(n — 1!

e
a3 )
- a e () + T el
+ $Honn (7‘%)]}

¢ = (6/a)(UM]»).

f(2) )

where?

3. ITERATIVE SOLUTION BASED ON THE
QUASILINEAR CHARACTER OF EQ. (1.7)
In this section we apply an iteration procedure for
the determination of solutions to Eq. (1.7), expressed
as

l_a_ az 232('.5) _ _
(2 > ar) = -uf e
where
{[E] = 27 — 6rJ‘ao'r7s_2 ds = —2r'J‘ws_3 di (s*7) ds
r r S
3.2
and
_ oE 0 (1 0V3E
=r——-—]. 3.
K rarar(r or ) (3-3)

The Green’s function of the operator

(l Q _ a2 2
20t ar )
is defined by the equations

(1 d 32

55 ) G(r, o, 1, 1) = 8(r — 1)t — 1)

t2>t, (34

4 The dimensionless constant &, depending principally on the grid
shape and having a value near 134 for typical square-mesh grids,
was introduced empirically by G. K. Batchelor, Theory of Homo-
geneous Turbulence (Cambridge University Press, London, 1960),
p. 135.

for
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and

G(r,re,t,t) =0 for t <. 3.5

With Fourier representations for the delta functions,
the inverse of the differential operator on the left side
of (3.4) can be applied to the equation to give an
expression that must be integrated twice, fiist by a
contour integration and then by a standard integra-
tion. The result is

[20 — to)} Fexp (_ (r—ro® )
Y 8v(t — ty)
G(r, o, 1, 1) = i>1 (36
= ‘0>
0, t< ty.

Equation (3.1) then becomes

a2(r5)

f f Ger, o, , t)LLE(ro, to)] dio dra,
3.7

which leads to the iterative series of approximate ex-
pressions for &:

a (r§n+1)

o f fG(r o, I, to)g[fn(rm to)] diy dry.

(3.8

Hence, if an approximate form is given for &, say &,
we can calculate the improved approximation &, by
integrating Eq. (3.8).

To illustrate this iterative approximation procedure,
let

E = F(ne™", (3.9)
which produces
V2E, = 2Fe " (2y%? — 3y), (3.10)
o = 16F%% 27 (7% — 29r%),  (3.11)
and
[, = —32Fytetr (2yr5 — 30 9—’). (3.12)
2y
Thus
32(1’ gz)
or?

= f f l:2(t t")] 32F2y4(2yr0 134 —2?)

Lr=r) ) dtydr,, (3.13)

X exp (—Zyrﬁ 8 — 1)
)

419
or finally
9*(réy)
or?
2
=f [Z(t t"):l 32F%% exp (— S )
] Ty 1+ 16p%(t — ty)

xf (Zyrg 1758 4 %)
-0 2‘)/

X exp [__ (1 +811}(6tyi(tt;)— to))

2
X (ro — ___r__)] dry dt,.
1+ 16pv(t — t,)

Concentrating on the inner integral, set

(3.14)

r ?

14 16pv(t — ty)
and

14+ 16yv(t — t,) _
8u(t — tg)
Then, by a translation of the integration variable
ro— (rg + @), we get

J— (27,,3 12,3 3 4 9y) —b(ro—a)2 dr,

73
= 2pa’(=/b)tr + (IOZ" 17a )(w/b)f r?
15ya’ 51a' 9a 5,
—— 4+ —|)(=/b 3.15
(21;2 » T2, )("/) 3.13)
Equation (3.14) thus becomes
32(r§2)
or?
82 [t
= %fo F2A(t — t(,)1}b‘z’(1r5 + mr® + nr)e 0" dt,,
(3.16)
where
I = 8ya’®®, m =40ya®b — 34a’°b?,
n = 30ypa’ — 51la’b + 18a’b%, (3.17)
= {29/[1 + 16yt — t)]} = 2ya’.

Both sides of (3.16) can be integrated with respect to
r to give

o(ré. 8./2 [t
—-——(;fz) = - —;é— fo Fo4(t — tp)tbt
X e—sz[_l_ rt + (_’1’_ + L) r2
2D 2D D?

( + s+

S l)]dto, (3.18)



420

where &, —0 as r— oo has been used. We now
substitute for D, I, m, n, b, and &’ to obtain

a(rgz) \/2 sz 4(t t)—%b—%
or 3258
2
X exp (_ __iw___)
1+ 16y%(t ~ t,)

_ 26 + 14016)yx(t — 1)
y[1 + 16p¥(t — t5)]

x 8rt
‘[1 + 16y3(t — to)]*

4 2o 0t = 1) "’)} dt (3.19)
y

Equation (3.19) can be integrated again with respect
to r by using ré, — 0 as r — oo to give

Sft F27}4(t _ tO)
o[ + 16p3(t — 1)
« ( 2r? 5+ S6yu(t — to))
y[1 + 16y3(t — 1)) a
2
__L) dto,
14+ 16p2(t — to)
where the expression for b has been substituted.
Note that as yet y(¢) and F(¢) have not been specified.
A form with some approximate validity is F(t) =
constant = —k and y(z) = 1/(8»?). If we set

§2=

X exp (— (3.20)

- r?
E, = —kexp (— 5?:)’ (3.21)

it follows that

3k

@0, 1) = 2V, = e (3.22)

a time dependence observed experimentally during the
initial period of decay. Using these values for F and y
in Eq. (3.20) yields

2
& = % (r*tM,, — r*My — 28v2M,,

+ 36vtM,y, — 8¥M,,),
where M,,, is defined by

(3.23)

t tm—% 2
M= f—————g (— ——————) dt,.
0 (2t — to)"F dv(2t — ty)
(3.29)
By making the substitution
I
4v(2t — t;)

where
6 = r/(8vt)t
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and simplifying the resulting expression, we obtain
an —_ (zt)m—n—30—2n—3e—02
92
xf V""%(V + 632V gy, (3.25)
0

For the combinations of m and » which occur in (3.23),
it is found that only four integrals appear in (3.25).
These integrals are

02

f ViV av = A(0), (3.26)
0
o? .

f VeV dv = 20e=" + 2A(0), (3.27)
0

o2 .
f V%e"VdV = —6%"" 4+ 3A(6), (3.28)
0

and _g_
f VT iy~ AG) — ONG),  (3.29)
o V + 6 ’ '
where . W‘}
N(§) = —S*W AW, 3.30
©) f e (3.30)

Thus, A(6) and N(f) are the only two integrals that
remain to be determined. Now

A®6) = —6e" + 1(6),

1(9) Ef:e_Wz dw = i;—r $(6)

(3.31)
where

(3.32)

and ¢ is the well-known error function normalized to
#(0) = 1. N(6) can of course be evaluated numeri-
cally for any given 6, but such an evaluation is not
required for our final result.

We now use (3.26) through (3.32) in (3.25) to get
the M,,,’s and then evaluate (3.23). Thus

- ke
2
8%

[2N(0) — 36-U(0)].  (3.33)

In order to evaluate f2'(r, t) we need the relations

N'(6) = 26N(6) + 2672~ — 2021(6) (3.34)

and

') = e (3.35)
Then
(2) 27 k2e_02 1 8%
S, 1) =2V, = & 0 1(6) — 661(6) + 7).
(3.36)
This result is in contrast to
R0 =E =L -0 @)
]
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For the case whenr = Qand ¢ ¢ 0, wehave § = 0 and

2 = “‘—2 3.38
0, t s .
aa ( ) 2 3t ( )
where
1(0) = 8 -_ %63 + rlo65 —_ (3.39)

has been used. Comparing (3.22) and (3.38), we see
that £ isin close correspondence with f;¥’ , indicat-
ing rapid convergence of our iteration procedure, if
k is of the order 3#2; for k =~ 3»% we have

90,1 = W ux =2, (340)
The relation (3.40) obtains in experimental situations

for a grid Reynolds number* UM/» == (3)a. We would
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expect

kzx X

{2) By
r’ t — ———

’W( ) 512¢%%

— 30751(0) — 2072~ + 36~%"]

e[12671(6) + 467°1(6)

2
s
+ :4_:3; e~"[8071(6) — 1261(6)

+ 07%1(0) + 2~ — 6-%"] (3.41)
to be a satisfactory approximation for the two-point

velocity-correlation tensor for grid Reynolds numbers
between 100 and 300 with the constant*

i = 8UM 2® .
a
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Spectral Theory of the Difference Equation
S+ 1) +f(n—1) =[E - em]f(n)
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In this work, the spectrum of the second-order difference equation

fa+ D+ f(n—1)=[E— ¢M]f(m

in the /2 Hilbert space is studied for the case in which the limit of the sequence {g(n)}°, exists. By means
of a simple representation the problem is transferred to one about the spectrum of an abstract operator
in a separable Hilbert space. This operator T has a form analogous to the Schrédinger operator, namely
T = T, + A, where T, is self-adjoint with a purely continuous spectrum but bounded, while 4 depends on
the sequence {@(n)}. In fact, 4 is of Hilbert~Schmidt type for any {¢(m)} in /%, and of trace class if the
series 2;":1 j@(m)| converges. Sufficient conditions for the existence of a discrete spectrum and more
generally, of proper values, are found. Using the theoryof the wave operators Q . = s — lim exp (iT?)

range exp (—iTyt), results on the existence of a mixed spectrum are obtained.

I. INTRODUCTION

Problems leading to difference and, more generally,
to functional equations have appeared in mathematics
and physics! (some even with a boundary-value
character?) before classical analysis was developed.
These problems were, however, rather simple and
could be solved by direct algebraic methods.

1 H. Meschkowski, Differenzengleichungen (Vandenhéch und
Rupprecht, Gottingen, 1959); E. Bohmer, Differenzengleichungen
und bestimmte Integrale (K. F. Kohler Verlag, Leipzig, 1939).

2 Z. Aczel, Vorlesungen iiber Functionalgleichungen (Birkhduser
Verlag, Basel, 1961), p. 106.

t—>L o

Later on, more complex forms appeared, while the
methods of treatment varied according to the known
methods of analysis.?

Most of the time, due to the analogies between
difference and differential equations, methods used
with success in the case of differential equations were
applied, and results of differential equations were
translated into analogous properties of difference
equations.

3 G. Doetsch, Handbuch der Laplace-Transformation (Birkhduser
Verlag, Basel, 1956, Vol. 3, p. 91.
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For the case whenr = Qand ¢ ¢ 0, wehave § = 0 and

2 = “‘—2 3.38
0, t s .
aa ( ) 2 3t ( )
where
1(0) = 8 -_ %63 + rlo65 —_ (3.39)

has been used. Comparing (3.22) and (3.38), we see
that £ isin close correspondence with f;¥’ , indicat-
ing rapid convergence of our iteration procedure, if
k is of the order 3#2; for k =~ 3»% we have

90,1 = W ux =2, (340)
The relation (3.40) obtains in experimental situations

for a grid Reynolds number* UM/» == (3)a. We would
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expect

kzx X

{2) By
r’ t — ———

’W( ) 512¢%%

— 30751(0) — 2072~ + 36~%"]

e[12671(6) + 467°1(6)

2
s
+ :4_:3; e~"[8071(6) — 1261(6)

+ 07%1(0) + 2~ — 6-%"] (3.41)
to be a satisfactory approximation for the two-point

velocity-correlation tensor for grid Reynolds numbers
between 100 and 300 with the constant*

i = 8UM 2® .
a
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Spectral Theory of the Difference Equation
S+ 1) +f(n—1) =[E - em]f(n)
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“ Democritus” Nuclear Research Center, Aghia Paraskevi, Attikis, Athens, Greece

(Received 17 April 1968)

In this work, the spectrum of the second-order difference equation

fa+ D+ f(n—1)=[E— ¢M]f(m

in the /2 Hilbert space is studied for the case in which the limit of the sequence {g(n)}°, exists. By means
of a simple representation the problem is transferred to one about the spectrum of an abstract operator
in a separable Hilbert space. This operator T has a form analogous to the Schrédinger operator, namely
T = T, + A, where T, is self-adjoint with a purely continuous spectrum but bounded, while 4 depends on
the sequence {@(n)}. In fact, 4 is of Hilbert~Schmidt type for any {¢(m)} in /%, and of trace class if the
series 2;":1 j@(m)| converges. Sufficient conditions for the existence of a discrete spectrum and more
generally, of proper values, are found. Using the theoryof the wave operators Q . = s — lim exp (iT?)

range exp (—iTyt), results on the existence of a mixed spectrum are obtained.

I. INTRODUCTION

Problems leading to difference and, more generally,
to functional equations have appeared in mathematics
and physics! (some even with a boundary-value
character?) before classical analysis was developed.
These problems were, however, rather simple and
could be solved by direct algebraic methods.

1 H. Meschkowski, Differenzengleichungen (Vandenhéch und
Rupprecht, Gottingen, 1959); E. Bohmer, Differenzengleichungen
und bestimmte Integrale (K. F. Kohler Verlag, Leipzig, 1939).

2 Z. Aczel, Vorlesungen iiber Functionalgleichungen (Birkhduser
Verlag, Basel, 1961), p. 106.

t—>L o

Later on, more complex forms appeared, while the
methods of treatment varied according to the known
methods of analysis.?

Most of the time, due to the analogies between
difference and differential equations, methods used
with success in the case of differential equations were
applied, and results of differential equations were
translated into analogous properties of difference
equations.

3 G. Doetsch, Handbuch der Laplace-Transformation (Birkhduser
Verlag, Basel, 1956, Vol. 3, p. 91.
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The second-order recurrence equation

o+ D) +fln—1)=[E—eMmlf(n) 1)

was studied very closely, because of the analogy with
the second-order differential equation of Liouville
or Schrddinger type, and all that was established for
the Schrédinger equation was carried over to Eq. (1)
(e.g., linear independence of solutions, asymptotic
forms,* constancy of the Wronskian, approximation
methods,? etc.).

In this work we study Eq. (1) in the /2 Hilbert space,
using methods of functional analysis. By translating
the problem into a problem on abstract operators
in a separable Hilbert space, we find a large class of
sequences {@(n)} for which the solutions of (1) form
a complete system in /2 (discrete spectrum). We also
exhibit another large class of sequences {p(n)} for
which proper values exist, but the corresponding
proper vectors do not form a complete system (mixed
spectrum). As a mixed spectrum in quantum me-
chanics characterizes the scattering systems, we find
something analogous to the admissible interaction
operators in Schrodinger’s equation for which the
scattering operator can be defined.6—8

In general, we study qualitatively the spectrum of
Eq. (1) for real-valued sequences {@(n)}, such that
either

lim p(n) = o 2
or
lim ¢(n) = a # 0. 3)

n—+ow

II. REDUCTION TO OPERATOR FORM

Consider an arbitrary but fixed basis {e,}, n =1,
2,+ -+, in a separable Hilbert space H and define the
operators ¥ and A as follows:

Ve, = e,
Ae, = p(n)e,.

The operator V is an isometry and its adjoint V'* a

partial isometry:
0 forn=1
* — 2 b
Vien { forn>1,

en—-l )

so that V*V = [ (identity) while V'V* = P (projection
on H — {e,}).

4 J. Meixner and F. Schifke, Mathieusche Funktionen und Sphdroid-
funktionen (Springer-Verlag, Berlin, 1954).

5 H. Schmidt, Math. Nachr. 1, 377 (1948); 2, 35 (1949); P.
Harper, Proc. Phys. Soc. (London) A68, 874 (1955).

8 J. M. Jauch and I. I. Zinnes, Nuovo Cimento 11, 553 (1959).

7 T. Kato, Perturbation Theory for Linear Operators (Springer-
Verlag, Berlin, 1966).

8 J. M. Jauch, Helv. Phys. Acta 31, 127, 661 (1958).
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Because of the isomorphism between H and /2, the
proper-value problem for Eq. (1) in the space /2 is
equivalent to the proper-value problem for the oper-
ator

T=T o+ 4,

where
Tr=V+V*
in the space H.
The operator T, plays the role of a free Hamiltonian
while A is a perturbation. As Ty is bounded, there is
no problem whether T is self-adjoint or not.

HI. THE OPERATORS 7,, A, AND T

We establish below the properties of the operators
Ty, A, and T, which we use later.

Proposition 1: The spectrum of T, is continuous
extending from —2 to 2.

Proof: First observe that
I Toll = 2.

As |[V] = [V*] =1, we have [T, < 2. Now let
f=nt3" e sothat |f] =1 and |T,fl|I?=4—
5nt; since || Toll = sup [T, f | over all £ with || f]| = 1,
we obtain || Ty| = 2. Now let 4 be a proper value of T,
with proper vector f=>% _a,e,; then we have
Qi1 + Oy = Aa,, (with a, =0); Hence a, =
c(Im — I7") where I, I, are the roots of 2 — Al + 1 =
0. But then X *_ {a,|? does not converge and thus f
is not a vector in H. Therefore T, has no proper values.

Proposition 2: In case

lim @(n) = oo,

n— w0
the operator 4 has a self-adjoint extension with dis-
crete spectrum.

Proof: We may assume ¢(n) # 0 for all n without
loss of generality, since addition of a constant multiple
of I does not change the nature of the spectrum.
First observe that the operator B defined by

Be, = p(n)7e,

is self-adjoint [since the ¢(n) are real] and completely
continuous® because @(n)! tends to zero. Since
AB = BA = I on the dense linear manifold spanned
by the basis {e,}, the inverse of B, which is self-adjoint,
is an extension of 4. To show that the spectrum is
discrete, let 1 # @(n) for all n. Then [A — @(n)]™?

® F. Riesz and B. Sz.-Nagy, Functional Analysis (Frederick Ungar
Publishing Co., New York, 1955), p. 235.
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tends to zero and, since

(A - A'I)—len = [(p(n) - l]—len’
the operator (4 — AI)7! is bounded. Thus 4 is not in
the spectrum of 4, which therefore consists of the
points ¢(n).

Proposition 3: The operator T is self-adjoint on a
suitable domain; its spectrum may extend beyond
[—2, 2] by a distance [|4] = sup |p(#)].

The first part follows from Proposition 2 and the
fact that T, is bounded. The second is obvious.

Propaosition 4: The operator T — al, where a real,
cannot be completely continuous.

Proof: If the operator is completely continuous,
then the sequence {e,} which converges weakly to
zero would be mapped onto a sequence strongly
convergent to zero; i.e., we should have

lim |(T — al)e,|® = lim [2 + (¢(n) — a)*] =0

n-+w n—+w

which is impossible for real a.

Proposition 5: The one-parameter unitary group
U, = exp (—iTyt)
acting on e, produces the vector

Uer = S m(—iy™ 4,20, @

m=1

where J,, is the ordinary Bessel function of order m.

Proof: By induction we have
2rim—1 n—1
Toe = — Crriok>
o kgo[(k) (n+1—k):| A
where we set (4) = 0if A > u, and

-] it’n
lrte]_ 20( f)

[nz/:ﬂ n—1

X - n+1-2k >
H[( k ) (n+1—k)}e+”’°
as

GO ) - Gartd)asicer
we obtain

U, = i (—it)*

n=0

["2/:2] n+1—2k
=okl(n +1—k)!
Setting n +1—-2k=m, m=1,2,3,---, and re-
arranging, we obtain

€nt1—2k

Ue, =3 m(—iymyr 3 =D
"~ mz=1 (=0 gok!(m+k)!
Q.ED.

(— iyeg2etm
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IV. THE SPECTRUM OF T: FIRST CASE

We consider the case where the perturbation A
satisfies condition (2). Then T has a discrete spectrum,
because of the following theorem.

Theorem 1: If T, is bounded self-adjoint and 4
self-adjoint with A4~* completely continuous, then
T, + A has a discrete spectrum.

This theorem is also valid for T, not self-adjoint, as
shown by Osborn!® for the special case where 4~ is
of Hilbert-Schmidt type. For the case that concerns us,
i.e., T, self-adjoint, the converse is also true if and
only if 7 is not bounded.

Given the above theorem, we observe that without
loss of generality we may assume that ¢(n) 5 0.
Then A7' exists and A7 'e, = [¢(n)]te, so that,
since

lim (p(m)™* =0,

n— 0
A7 is completely continuous. Hence T, + 4 has a
discrete spectrum,

Proof of Theorem 1: First assume that |[|Tpf -
A1l < 1; then, as T, + A = (I + T,A )4 and
| Tod™2|| < 1, we see that

(Ty + Ay = A7 + Tod™)

because I + T,A™! has a bounded inverse. Since 4!
is completely continuousand (I + T,47*)~!is bounded,
(Ty + A)'is completely continuous and therefore the
self-adjoint operator T, + A has a discrete spectrum
as is seen by the argument of Proposition 2. To get rid
of the extra hypothesis

1Tl - 1471 < 1,

we replace 4 by A, = A + AI, where 1 is to be
chosen later, so that

1Tl - 14T < 15

then the argument applies to T, + 4, and the result
holds for Ty + A =T, + A, — AL
Suppose that for some basis {e,} we have

Ale, = 1,e,,
where |4,] > [43] = - - - — 0, so that
AT, = (A + ;D)7 e, .

Since (A + 4;))* —0 as n— o, A7' is completely

10 J. E. Osborn, J. Math. & Phys. 45, 391 (1966).
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continuous. Further, we have
AT = 14 + A7
for some /,, and it suffices to choose
A>Tl + 141
V. THE SPECTRUM OF T: SECOND CASE

We now consider the case where A4 satisfies con-
dition (3); then 4 — al is completely continuous,
and as the addition of —al simply translates the
spectrum of 7', we may assume A itself to be completely
continuous, i.e., lim ¢(n) = 0. Then the limit points

N— 0

of T, are the same as those of 7T7% and, therefore, the
limit points of 7" cover the interval [—2, 2].

Using the results of Sec. III we have the following
theorem.

Theorem 2: The operator T cannot have a discrete
spectrum {E,} such that lim E, exists, i.e., it cannot

n—c0

have a pure point spectrum with a single limit point.
In the case

17 > 2, &)

the point spectrum of T is not empty.

The first follows from the fact that, if

limE, = a,
n—oo

then T — al would be completely continuous. The
second follows from the above remark that the limit
points of T cover the interval [—2, 2].

Remarks: (1) As | Te,|?* = 2 + [p(n)]?, we see that,
if some [@(n)| > V2, then |T] >2, and a point
spectrum exists. (2) Another case in which |7 > 2
is obtained as follows:

Let f be a normalized proper vector of V'* with a
real proper value 4, i.e.,

f= =3,
Then (5) holds, provided =

(A = [ + (DF + A* + 222 + 4751 — 72)
x 3 g + 2071 — 193 #(n) > 3. (6)

n=2
For example, in the case of g(n) = 4", 1 < 1, we
obtain from (6), with some manipulation, that (5)
holds if 2 > (3)VA.
Now it may be the case that T has a pure-point
spectrum dense in [—2, 2], as the Weyl-von Neumann
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theorem predicts.”** This, however, cannot happen
whenever 4 is of trace class, according to a theorem
of Kato (valid for arbitrary self-adjoint 7;).” Using the
theory of wave operators, we give below a simple
argument which covers a special case of Kato’s
theorem.

Theorem 3: In case there exists an « > 1 such that

S [pm)fm® < oo, ™

m=1

at least part of the spectrum of T is continuous.

In particular, we see that in case @(m) ~ 1/m!*¢ for
large m, the spectrum of T contains a continuous
part. This is a result analogous to that for ordinary
differential operators of Schrodinger type.” Our
argument can be used to give a proof for the case
where 4 is of trace class analogous to, but naturally
simpler than, Kato’s argument.

We first summarize the properties of the wave
operators that we need; proofs are to be found in the
literature.®8 Let V, = exp (—iTt), U, = exp (—iTyt),
for —oo < t < 0. The wave operators are defined
by

Q, =s— lim V*U,.
t—too

(a) A necessary and sufficient condition for the
existence of Q, f is the existence of the strong
integral

+o0
J VEAU,f dt.
From this the sufficient condition
Foo
f AU f|| dt < + 00 (Cook’s criterion),

is easily obtained.
(b) Since V;*U, is unitary, if Q  f exists, we have

1QL A1 =111

so that Q__ are isometries on their nontrivial respective
domains, and therefore their ranges are not trivial.

(¢) If Q, fexists for some vector f, then it exists for
an infinite-dimensional subspace of H, because T,
has a purely continuous spectrum.

(d) The ranges of €, are contained in the continu-
ous subspace of H. [A short proof of (d) is given in the
appendix.]

11§, von Neumann, Collected Works (Pergamon Press, N.Y.,
1961), Vol. 4, p. 38.
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Proof of Theorem 3: We apply Cook’s criterion;
from Eq. (4) we obtain

© %
| AU, = [ %lmzr-zwm(zt)rtq)(m)]z]

and hence, using Schwartz’s inequality,

[fwﬂAUtelH alt]2

< f “rcar|” S mlgmPete,QoF dr,
m=1
®

where € > 0is to be chosen later. The first factor is
finite, while the second is bounded by

o0

S mig(m)] f "0 dt.
m=1
Since!?

L(s)L'(m + 3(1 — 5))
2T + D)T(m + 31 + 5))°
we have for large m that

+o
f J.0OP dt =

+00
f . CORE dt ~ mte,
0

Thus the second factor in (8) is finite, provided the
series D °_. [@(m)Pm!* converges. This is insured by
our hypothesis (7), provided we choose 0 < e <
1 —a

Remarks: (1) We can see easily that the condition

z <p(m)2m1+‘ < 0
m=1

(for some € > 0) implies that A4 is of trace class. For
if we write |@(m)| = m-11+¢™] then

S loml = X + ¥,

where X contains all terms with a(m) > €, and Y all
those with a(m) < e Then X is majorized by
Se m¢and Y by D7 @(m)®m'*¢, and hence
both converge.

(2) The full theorem of Kato for our case can be
obtained in an easier way if we observe that the really
hard part in the argument of Ref. 7 concerns the case
of a perturbation of finite rank. Here this is trivial

12y, M. Ryshik and L S. Gradstein, Tables (VEB Deutscher
Verlag der Wissenschaften, Berlin, 1957), p. 231.
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because the integral
f V¥AUe, dt = | > m(=i)" 7,20V e, dt
m=1
obviously exists.

VL. A TYPICAL CASE: COULOMB
PERTURBATION

For ¢(n) = 2b/n, the operator A4 is called a Coulomb
perturbation. The proper values of T are!®

Ek = j:2[1 + (b/k)2]‘;', k = 15 2’ 3’ RS (9)

corresponding to b > 0 or b < 0. The proper vectors
have the form

Ju(n) = n(Ey, + blk)™"Py(n), (10)

where the P,(n) are polynomials in » of degree k, and
they do not form a complete system in /? as follows
from Theorem 2. This is very difficult to prove by
classical methods.

Remark: The proper values (9) and proper vectors
(10) have been obtained by classical methods. It is
clear that an abstract approach to this special problem
may lead to a general method of obtaining the proper
values of Eq. (1).

APPENDIX

We give a short proof of statement (d) in Sec. V for
a general scattering system. To begin with, we can see
immediately from the definition that any wave
operator L intertwines U, and V,:

QUt = VtQ.

Let R be the range of Q (a subspace 7 0), and P the
projection on R:P = QQ* If E,, F, are the spectral
families of 7,, we have

QE, = F,Q, Q*F, = E,Q*,

so that F,P = F,QQ% = QF,Q* = QQ*F, = PF,
and thus R reduces T. Suppose Tf = Af for some f
in R: then f = Qg for some g in H, and hence TQg =
AQg. As QFE, = F,Q implies QT, = TQ, we have
Q(Tog — 2g) = 0.

As Q is an isometry, we get Tog = Ag which is
impossible, because 7, has continuous spectrum.
Thus g = 0, and hence, f = 0. Therefore no vector of
R is a proper vector of T, i.e., R is contained within
the continuous subspace of T.

13 E, K. Ifantis, Z. Angew. Math. Mech. 48, 66 (1968).
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The method of averaging is applied to systems having Hamiltonians of the form
H = H(J) + <H,(J,$, p, @),

where H, is periodic in each of the components of . When the system is nondegenerate it is shown that
corresponding to each component of ¢ there is a quantity K; which is invariant to all orders in e. When
the system has an m-fold degeneracy,somewhat weaker results are obtained. In this case it is shown that
the Hamiltonian, when expressed in terms of the average variables, depends on the angle variables only
through their m degenerate combinations. This is true to all orders in . Thus, if  has s components there
are s — minvariants provided that the average variables can be made canonical. However, the conditions
under which degenerate perturbation theory can be made canonical are not known. The invariants
which arise when the Hamiltonian has an adiabatic or a harmonic time dependence are also discussed.
The techniques are applied to the simple case of a harmonic oscillator whose frequency varies slowly

with time.

1. INTRODUCTION

In recent years there have appeared several publica-
tions which discuss the existence of quantities which
are invariant to all orders in some small parameter.
Apparently the first such discussion was given by
Kulsrud who considered a harmonic oscillator whose
frequency varied slowly from an initial constant value
to a final constant value.! He showed that the ratio
of the energy to the frequency was the same in the
final state as it was in the initial state to all orders in
the slowness parameter. Shortly thereafter, Kruskal
considered a charged particle moving in a magnetic
field which varied slowly from an initial constant
value to a final constant value.? Using perturbation
theory he was able to demonstrate the existence of a
quantity (the magnetic moment) whose final value was
the same as its initial value to all orders in perturbation
theory. Chandrasekhar then considered a harmonic
oscillator whose frequency varied in a slow but
arbitrary fashion.® He showed how to construct a
quantity which is constant to any desired order in the
slowness parameter. This was accomplished by a
sequence of transformations of the dependent and
independent variables. Next Lenard considered a
one-dimensional oscillator whose energy varied slowly
with time.* He was able to show that the action
integral, extended over a period of the instantaneous
time-independent problem, was invariant to all orders

1 R. Kulsrud, Phys. Rev. 106, 205 (1957).

2 M. Kruskal, Rendiconti del Terzo Congresso Internazionale sui
Fenomeni D’Ionizzazione nei Gas tenuto a Venezia (Societa Italiana
di Fisica, Milan, 1957).

3 8. Chandrasekhar, The Plasma in a Magnetic Field, R. Landshoff,
Ed. (Stanford University Press, Stanford, Calif., 1958).

4 A. Lenard, Ann. Phys. (N.Y.) 6, 261 (1959).

in the slowness parameter. Gardner also considered a
one-dimensional oscillatory system whose Hamil-
tonian varied slowly with time.5 He showed that,
by performing a certain sequence of canonical
transformations, one could construct a quantity
which is constant to any desired order in the slowness
parameter. Finally Kruskal discussed a general class
of Hamiltonian systems whose motions were nearly
periodic.® He was able to show that the action integral
when defined in an appropriate way is constant to all
orders in perturbation theory.

The papers which we have discussed above have
one thing in common: they deal with systems having
a single rapid phase. The invariants are in some sense
related to an averaging over this rapid phase. The
purpose of the present paper is to extend the results
obtained above to systems having several rapid
phases. As our starting point, we employ a perturba-
tion theory which we developed in a forthcoming
publication (henceforth cited as I).” This perturbation
theory endeavors to separate the average or secular
motion from the rapidly fluctuating motion. The
introduction of average variables at the very outset
is quite advantageous.® As we shall see, the invari-
ants are, in a sense, built into the method of aver-
aging.

Our program is as follows: In Sec. 2 we apply the

5 C. S. Gardner, Phys. Rev. 115, 791 (1959).

¢ M. Kruskal, J. Math, Phys. 3, 806 (1962).

7 T. P. Coffey and G. W. Ford, J. Math. Phys. (to be published).

8 It should be pointed out here that the perturbation theory
developed by Kruskal (Ref. 6) attempts to introduce average or
“‘nice” variables. Indeed, Kruskal’s perturbation theory is intimately
related to the method of rapidly rotating phase developed by
Bogoliubov and Mitropolsky [N. N. Bogoliubov and Y. A. Mitro-

polsky, Asymptotic Methods in the Theory of Non-Linear Oscillations
(Hindustan Publishing Company, Delhi, India, 1961)].
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method of averaging to nondegenerate Hamiltonian
systems. We show that for each angular degree of
freedom there is a quantity which is invariant to all
orders. These invariants are a direct consequence of the
fact that nondegenerate perturbation theory can be
made canonical to all orders. In Sec. 3 we apply the
method of averaging to a Hamiltonian system which
has an m-fold degeneracy.® We show that the Hamil-
tonian when expressed in terms of the average variables
depends on the angles only through their m degenerate
combinations. This result holds to all orders. If the
system has s angular degrees of freedom then there
will be s — m invariants provided that degenerate
perturbation theory can be made canonical to all
orders. However, the conditions under which de-
generate perturbation theory can be made canonical
are not known. Thus, the results which we obtain for
degenerate systems are weaker than those which we
obtain for nondegenerate systems. In Sec. 4 we discuss
the simple problem of a harmonic oscillator whose
frequency varies slowly with time.

A few words are now in order concerning the state-
ment that a quantity is invariant to all orders. This
does not mean that this quantity is a rigorous constant
of the motion. For such a quantity to be a rigorous
constant of the motion, perturbation theory would have
to converge to the exact solution. Perturbation theory,
however, makes no claims of convergence. To date
only some rather weak theorems concerning the
asymptotic convergence of perturbation theory have
been given.!® By invariance to all orders we simply
mean that a quantity is constant to all orders in the
formal structure of perturbation theory. The practical
usefulness of these formal constants depends on the
extent to which perturbation theory provides an
approximate description of the true motion. We
should also mention here that our classifications of
systems as nondegenerate or m-fold degenerate are
idealizations. A system is truly nondegenerate or
m-fold degenerate only to some finite order of per-
turbation theory due to the appearance of small
divisors in the higher orders of perturbation theory.
The appearance of these small divisors influences the
extent to which our idealized perturbation theories
represent the true motion. However, if these small
divisors occur only at high orders of perturbation
theory, we can expect that the formal constants which

? In this paper, we interpret the term degeneracy to mean a near
commensurability of the unperturbed frequencies as well as a pure
commensurability of these frequencies.

10 For a discussion of the asymptotic convergence of perturbation
theory, see J. Berkowitz and C. S. Gardner, Commun. Pure Appl.
Math. 12, 501 (1959). See also Ref. 6 and T. P. Coffey, ‘“‘Analytical

Methods in the Theory of Non-Linear Oscillations” (Ph.D. thesis,
The University of Michigan, Ann Arbor, 1966).
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we obtain will be quite useful from a practical
viewpoint.

2. NONDEGENERATE SYSTEMS

Let us first consider systems which are described by
a Hamiltonian of the form*

H = HyJ) + «H,(J, ¢, p, D. 2.1

Here € is a small parameter, J; is the momentum
conjugate to the angle variable ; (i=1,2,---,5),
and p; is the momentum conjugate to the variable
gr (k =1,2,-+-,r). We require that H, is a periodic
function of each of the ,’s and that both H, and H,
are infinitely differentiable functions of their arguments.

Hamilton’s equations of motion are found from
Eq. (2.1) to be

J, = —ea—Hl- , (2.2a)
oy;
po=—2h, (2.25)
04,
Gy =€ oH, ; (2.2¢)
op;
JH
b = wAJ 1. 2.2d
Y; w,()+€aJi (2.2d)
where
oH .
%)) =—2. 2.3
wi(J) 2, (2.3)

These equations are in the standard form given in L.
The object of the perturbation theory presented in I
is to achieve a separation of the rapidly fluctuating
motion from the slow secular motion. In the case of
nondegenerate systems this separation is achieved by
the following change of variables:

Pr =Py + ;ew;"’a(, $.P,Q), (242)
4= 0+ SCEVK. .P, Q). (4b)
J, =K, + ie”Ff")(K, $,P,Q), (240
b= b+ ZECUEK G.PQ), Q4

where the D{™’s, E™’s, F{"’s, and G{"’s are all
required to be periodic functions of each of the ¢,’s.
In order that the P.’s, Q)’s, K/’s, and ¢;’s represent

11 The extension to cases where the Hamiltonian contains second-

and higher-order terms is straightforward. Hamiltonians of the
form (2.1) describe systems which are nearly multiple-periodic.
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only the secular motion, we require that

Py = gle"a,‘!"(P, Q.K), (2.52)

= ge"bi”’(P, Q,K), (2.5b)
K = §le"A£"’(P, Q. K), (2.5¢)
§= o) + SEUP,QK), (250

where the right-hand sides of (2.5) are independent of
the ¢,’s.

Equations (2.4) and (2.5) are simply the formulation
of nondegenerate perturbation theory as presented in
L In I we pointed out that the functions D™, E{™,
F™, and G are determined only to within an
arbitrary add1t1ve function of K, P, and Q. We shall
show that these arbitrary functions may be chosen so
that the transformation (2.4) is canonical. For the
moment let us assume that this is so. It is then
straightforward to show that the canonical K’s are
constant to all orders in nondegenerate perturbation
theory. First we write the Hamiltonian (2.1) in terms of
the new variables and denote it by A(K,d, P, Q).
Since K; and ¢; are assumed to be canonically con-
jugate variables to all orders, we must have that

; oK, ¢, P, Q)
K="= 2.6
24, (2.6)
Upon comparing Eqgs. (2.50) and (2.6) we see that
oh
— =» > "4A{"(P,Q,K 2.7
24, "=1€ (P, Q,K). 2.7

Now, by construction, the Hamiltonian 4(K, ¢, P, Q)
must be a periodic function of each of the ¢,s.
Therefore, the left-hand side of Eq. (2.7) can contain
no zero harmonic in ¢,. However, by construction the
right-hand side of Eq. (2.7) is independent of ¢,. We
conclude then that the 4{"’s must vanish to all orders.
Thus the canonical K;’s are constant to all orders in
nondegenerate perturbation theory.

We must now demonstrate that the transformation
(2.4) can be made canonical to all orders. In order to
do this in a succinct fashion we introduce the following
change in notation:

(K13 K2’ . s) = (V—N’ —N+1s "ty V—N+s—1)’
(2.8a)
(¢1: ¢2’ DY ¢s) = (VN’ VN—l’ : s VN—3+1),
(2.8b)
(PlsPZ"‘°,Pr)=(V—N+s,“"V—l): (280)
(Qla QZa"' ’Qr)= (VN—ss..' ’ Vl), (28d)
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where N = r + s. The equations of motion (2.5) now
have the form

Vi =eaqy(Voy, V), k=—N,---,r, (2.9a)
Vi=w,(Voy, -+, V), j=r+1,+,N, (29b)

where the a,’s and w,’s are formal infinite series in
powers of e.

If the transformation is to be canonical, we must
have

Vi, V;} =sgnid, ;, i,j=—N, -+, N, (2.10)
where the Poisson brackets are formed with respect to
any complete set of canonical variables. We now show
that the left-hand sides of Eq. (2.10) are independent
of the angle variables V; (j=r+1,---,N) no
matter how we choose the arbitrary zero harmonics
in the transformation (2.4). In order to do this we
construct the (N + r) X (N + r)-dimensional matrix
L whose (i, k)th component L, is

Vk}s

We also construct the [(N 4+ r) X (N 4+ r)]-dimen-
sional matrix M whose (i, k)th component M, is

Ly = {V;, ik#r+1,---,N. (2.11)

Oa
M, =—% ik 1, ++,N. (212
ik aV, ! # r + ( )
The time derivative of L, is
Lik = {Vi’ Vit + {Vs, Vk}
= {Ea,-, Vk} + {Vl" Gak}. (2.13)
Equation (2.13) may be rewritten as'?
by=e 3 {Vm,Vk}——+ S R 94,
N v, w=n v,
2.14)
1t follows from Eq. (2.14) that
L =eML + LM, (2.15)

where ¥ is the transpose of the matrix M. It must also
be true that

’
Eak

L= o + 2.16
—gf-lw v, " Wl aV,c (2.16)
We find from Eqs. (2.15) and (2.16) that
N oL L oL
ML + LM — a . (217
j=§+1wj ov; - € ) eng * aVk (217)

12 H. Goldstein, Classical Mechanics (Addison-Wesley Publ. Co.,
Inc., Reading, Mass., 1959), p. 254, Eq. (8.50).
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The matrix L must be a periodic function of the
angle variables V; (j=r+1,-:+, N). Let us sup-
pose that L is known to be independent of the V;’s
(j=r+1,--+, N)through order €". Thus,

L=L(n)+ i emL(m)

m=n+1

(2.18)

where L™ is independent of the V’s (j=r + 1, -,
N). Upon substituting Eq. (2.18) into (2.17) and
equating the (» + 1)th-order terms on each side we
find that

N aL(n-i-l)
0
w
j=2+1 ! av;
_ V7 T (n) (n) _ < ‘Zlﬂ
= (eML™ + LM — ¢ Y a, , (2.19)
=~ OV, fat1

where the w(V_y, -+, V_,_,) are the unperturbed
frequencies and where the right-hand side includes
only those terms of order n + 1. The point to observe
is that the right-hand side of (2.19) is independent of
the Vs (j=r+ 1,-++, N). Since L") must be a
periodic function of the V;’s (j=r 4+ 1,-:-, N) the
right-hand side of (2.19) can contain no zero harmonic
and must therefore vanish. This leaves

N 0 aL(n+1) —0

> o} (2.20)

j=r+1

The homogeneous equation (2.20) has two possible
types of solutions: either L*+1 is independent of the
Vs (j=r 4+ 1,---, N)or there is a solution

N

j=r+1

(2.21)
where the p,’s are integers satisfying the identity

N
> p;o) =0.

F=r+1

(2.22)

In nondegenerate perturbation theory we assume that
there are no sets of integers satisfying this identity
except for the trivial set in which all the p;’s are zero.
We conclude then that L™ is independent of the
Vis(j=r+1,-++, N). Thus if L is independent of
the Vs (j=r 4+ 1, -+, N)through order " thenitis
independent of the ¥;’s through order €*+. Since the
transformation (2.4) is the identity transformation
through order €°, L is independent of the V;’s (j =
r+ 1,4 --+, N)through order €. It follows, there-
fore, by mathematical induction that L is independent
of the Vs (j=r+1,---,N) to all orders in
nondegenerate perturbation theory.
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We must now investigate those brackets which
involve combinations of the angle and nonangle
variables. To do this we construct the (¥ +r) X 1
dimensional matrix R whose ith component R} is

R ={V,,V}, i#r+1, N,

j=r+1,---,N. (223)

We also construct the (N +r) X 1 dimensional
matrix S whose ith component S is

. ow;
S =t i#r+ LN,
L +
j=r+1,---,N. (224
Proceeding as we did for L, we find that
N aR(m) - r aR(m)
w,—— = LS + eMR'™ — ¢ a, —.
5=§L1 g av; k=z-N 2
(2.25)

The matrix R'™ must be periodic in the angle variables
and is known to be independent of the angle variables
through order €°. It follows, therefore, by the same
arguments which were used on Eq. (2.17) that the
R"™”s are independent of the ¥;’s (j=r + 1,-++, N)
to all orders in nondegenerate perturbation theory.

We must now consider the remaining case of the
brackets {V;, V;} (i,j=r+<+1, -+, N). Proceeding
as before, we find that

N

z w, a{Vz ’ V:i }

v,

m=r+1
a{I/t ’ V:I}
v,

Since {¥V;, V;} must be a periodic function of the angle
variables and is known to be independent of the angle
variables through order €°, it follows that {V, V;}
(i, j=r+1,---,N) is independent of the angle
variables V, (k=r+1,--,N) to all orders in
nondegenerate perturbation theory.

We have succeeded in showing that the Poisson
brackets {V;,V;} (i,j= —N,+‘-,N) are inde-
pendent of the angle variables V,(k =r + 1,-- -, N).
This proof is independent of how we choose the
arbitrary zero harmonic in the transformation (2.4).
Thus we are at liberty to choose the arbitrary zero
harmonics so that Eq. (2.10) is satisfied. In other
words, we can choose the arbitrary zero harmonics so
that the transformation (2.4) is canonical to all orders
in nondegenerate perturbation theory.

Consider now the special case where the system has
only angular degrees of freedom; in other words,

,

— Pl gl JU) D)

= RISY - SURY ¢ 3
k=—,

(2.26)
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when the Hamiltonian (2.1) depends only on the
J’s and the yp,’s. In this case, the K’s are constant to
all orders whether the transformation (2.4) is canonical
or not. This is because the noncanonical K’s are equal
to the canonical X;’s plus some function of the canoni-
cal K;’s alone. Since the canonical K;’s are known to be
constant it must be that all choices of the K,’s turn out
to be constant to all orders. We also see that, in the
case we are discussing here, the canonical K;’s and
¢’s are just the classical action and angle variables of
the perturbed system. The solutions of the perturbed
problem are all multiple-periodic to all orders in
nondegenerate perturbation theory. Thus, in this
special case, nondegenerate perturbation theory is
equivalent to the nondegenerate classical perturbation
theory of Poincaré. It is interesting to note that the
perturbation theory of Poincaré secks only the
multiple-periodic solutions while our nondegenerate
perturbation theory imposes no such restrictions. It
simply turns out that, in this special case, nondegen-
erate perturbation theory yields only multiple-periodic
solutions.

We conclude this discussion of nondegenerate
invariants by briefly considering two other types of
systems which commonly occur in practice. First we
consider oscillatory systems whose Hamiltonians are
slowly varying functions of some coordinates ¢ and of
the time 7. We take the Hamiltonian to be of the form

H= HO(J, €q, 6t) + EIJI(J, "'p’ P, 4, Et)a (227)

where € is a small parameter and H, is a periodic
function of each of the s (i = 1,---,s). Here, as
usual, J; is the momentum conjugate to y; and p; is
the momentum conjugate to ¢, (j=1,-'-,r).
Hamilton’s equations of motion are found from
(2.27) to be

b= (2.282)
v
pom —elo O (28b)
Oeq;, 0q;
q'k=e%, k=1,---,r, (2.28¢)
opy,
4 = 0, cq, ) + %5;'—1 =1, s (2280)
where
o_ OH,
0 20 2.29
of =2 2.29)

We perform nondegenerate perturbation theory on
Egs. (2.28) by introducing new variables K, ¢, P, and
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Q such that
Pe= P, + 2 "D"(K, $, P, Q,et), (2.30a)
n=1

0 = Qi + X "E{V(K, $, P, Q,¢t), (2.30b)
n=1

J;=K;+ Y eFM(K, $,P,Q,et), (2.30¢c)
n=1

v = ¢ + 2 e"G"(K, §, P, Q,ef). (2.30d)
n=1

Here the D{™’s, E{™’s, F{™’s, and G{"’s are required
to be periodic functions of each of the ¢.’s. One should
note that the transformation (2.30) is time-dependent.
The P,’s, Qy’s, Ks, and ¢’s are to satisfy the
equations

P, =3 cal"(K, P, Q,et), (2.31a)
n=1

O, = X "b"(K, P, Q, 1), (2.31b)
n=1

K=Y 4K, P, Q,eb), (2.31¢)

n=1

6 = XK, €Q, ef) + 3 "B(K, P, Q, ef). (2.31d)
n=1

Equations (2.30) and (2.31) are simply an attempt
to separate the slow secular motion from the rapidly
fluctuating motion. We now require that the trans-
formation (2.30) be canonical to all orders.!* The
Hamiltonian h(K,¢, P, Q, e2) which is appropriate
to the new canonical variables K, ¢, P, and Q must be
a periodic function of each of the ¢,’s. This fact allows
us to prove that the canonical ks (i = 1, -« -, 5) are
constant to all orders in nondegenerate perturbation

theory. Since K; is canonically conjugate to ¢;, we
must have that
; oh
Ki=——. 2.32
24, (2.32)

Upon comparing Eq. (2.32) with Eq. (2.31) we find
that

2 = — T AMK, P, Q, ). (2.33)

n=1

Since A(K, $, P, Q, ef) must be a periodic function of
the ¢,’s, we conclude from Eq. (2.33) that the 4("’s
must vanish to all orders. We have, therefore, proved
that the canonical K;’s are constant to all orders in
nondegenerate perturbation theory. These invariants
are usually called adiabatic invariants because of the
adiabatic time dependence of the Hamiltonian (2.27).

18 The proof that this can be done is a logical extension of the
proof that (2.4) can be made canonical.
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We conclude this section by discussing the invar-
iants which arise when a nondegenerate oscillatory
system is driven by a weak harmonic force. The
Hamiltonian for such a system has the form

H = HyJ) + eH,(J, ¢, 1), 2.34)

where € is a small parameter and H, is a periodic
function of each of the u’s (i=1,---,s) and of
ot. Hamilton’s equations of motion are found from
Eq. (2.34) to be

Jo=—e O (2.350)

a'Pi

oH
b = (J) + e L 2.35b
P = ;(J) + € 2, ( )
where

oH
o_ %o 2.36
; 2, (2.36)

We can apply nondegenerate perturbation theory to
Equations (2.35) by introducing new variables K and
¢ such that

Ji=K;+ X FP (K, b, 01), (237a)
n=1

vi= ¢ + 2 "GM(K, b, 0f),  (2.37b)
n=1

where the F{*’s and G{"’s are required to be periodic
functions of each of the ¢,s and of wt. The time
development of the K.'s and ¢,’s is governed by the
equations

K, =Y A" (K), (2.382)
n=1
é; = 0XK) + 3 "B{"(K). (2.38b)
n=1

We now require that the transformation (2.37) be
canonical to all orders. Since the Hamiltonian
h(K,d, wt) which is appropriate to the new variables
must be a periodic function of each of the ¢,’s, it is
straightforward to show that the canonical K;’s are
invariant to all orders. Since K; is canonically con-
jugate to ¢, we must have that

. oh
K=—-——. 2.39
2%, &
Upon comparing Eqs. (2.39) and (2.38a) we find that
oh 2
5‘; = — gle"Agm(K). (2.40)

Since A(K, &, wt) is a periodic function of the ¢,’s, we
conclude from Eq. (2.40) that the 4{*s are zero to all
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orders. Thus the K,’s are constant to all orders in
nondegenerate perturbation theory.

3. DEGENERATE SYSTEMS

In I we pointed out that nondegenerate perturbation
theory will often fail because certain linear combina-
tions of the angle variables give rise to small divisors
in the transformation (2.4). We showed that this
problem of small divisions can be avoided by allowing
the differential equations which describe the average
motion to depend upon these degenerate combinations
of the angle variables. We have called this modification
degenerate perturbation theory. In degenerate per-
turbation theory, as in nondegenerate perturbation
theory, the transformation to the average variables is
determined only to within an arbitrary zero harmonic
in the average angle variables. In nondegenerate
perturbation theory we found that we could exploit
this arbitrariness to prove that nondegenerate
perturbation theory can be performed in a canonical
fashion. Once we proved the existence of canonical
average variables, it was then rather simple to demon-
strate the existence of nondegenerate invariants. In
degenerate perturbation theory, however, the situation
is not so simple. Because of the appearance of the
angle variables in the equations for the average motion,
it is no longer clear that the existence of an arbitrary
zero harmonic in the transformation to the average
variables is sufficient to guarantee that this trans-
formation can be made in a canonical fashion. We,
therefore, have to content ourselves with somewhat
weaker results in this section than those which were
obtained in the previous section. Here we prove
certain results about the Hamiltonian when it is
written in terms of the average variables. These
results imply the existence of degenerate invariants
provided that the transformation to the average
variables can be made canonical.

We again consider systems which are described by
Hamiltonians of the form (2.1). Hamilton’s equations
of motion are given by Eqs. (2-2), and the transforma-
tion to the average variables P, Q, (k =1, ---,7r),
and K,, ¢, (i =1, -, 5) can be written as in Eqgs.
(2.4) where the D{™’s, E\"’s, F{"’s, and G\"’s are
required to be periodic functions of each of the ¢,’s.

We now specify that our system is m-fold degenerate
(m < s) through the m linearly-independent angular
combinations

0; = pads + pias + - -+ +Pia¢’s,
i=1,---,m,

(3.1)

where the p,’s are integers not all of which are zero.

In particular we assume that the set of integers a,;,



432

not all zero, for which

ay07 + apw; + +* + a;0) =0, (3.2)
is either the null set or is a subset of the p;;’s. The
equations of motion for the average variables take the

form

P, = e, (P, Q, K, 0), (3.3a)
0, = b, (P, Q,K, 0), (3.3b)
K, = ¢4,(P, Q,K, 6), (3.3¢)
¢: = 0, (P, Q, K, 0), (3.3d)

where a,, b,, A;, and w,, are formal infinite series in
powers of ¢ with the lowest-order contribution to
w; being the unperturbed frequency «w%X). Again let
us point out that the 8 dependence has been included
in Eqgs. (3.3) simply to avoid the small divisors which
would occur in nondegenerate perturbation theory
because of the angular combinations given in (3.1).
We now prove that the Hamiltonian (2.1), when
expressed in terms of the average variables P, Q, K,
and ¢, will depend upon the ¢;’s only through the
6;’s defined by (3.1). To do this we replace the ¢,’s

(j=1,-+-,s) by the 6’s (i=1,---,m) and the
wes (k=m+1,--,5) defined by

W=, k=m+1,- 3.4)
The 6s (i =1, -+, m) together with the w’s (k =

m+1,--,5) are equivalent to the set of ¢,’s. The
Hamiltonian (2.1), when expressed in terms of the
new variables P, Q, K, 0, ., is denoted by A(P, Q,
K, 0, p). Since the Hamiltonian is autonomous, its
time derivative must vanish. Thus we find that

& oh $ Oh
Z(Puah + Ppws + * + piy) _9 + z a
i=1 f j=m+1 U
r oh oh
= —DeA;, — — + b,—}. (3.5
zf aK gle{ + j aQ, ( )

Now let us suppose that A is known to be independent
of the u;s (j=m+1,---,5) through order e".
In other words,

h=hr"P,Q,K,0) + 3 h'™(P,Q,K,0, ).
m=n-+1
(3.6)

When we substitute Eq. (3.6) into Eq. (3.5) we observe
that the rhs of (3.5) is independent of . through order
"1, However, the lhs of (3.5) can have an (n 4 1)th
order p dependence coming from the term

ah(n+1)
w%(K
* + Piwg(K)]* 2,

E (K) ah( n+1)

j=m+1 Mj

E[in?(K) + Pi2w3(K) + -
i=1

(3.7
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The expression given by (3.7) must be independent of
. Since A‘"+1) must be a periodic function of the
6;’s and the u,’s, expression (3.7) is independent of .
only if A"+ js independent of p or if there exist
some integers b,;, not all of which are zero, such that

m

zbki[l’uwi) + Pizwg + -+ Pisw(;] + Z bkiw(i) =0.
i=1 j=m—+1
(3.8)

However, Eq. (3.8) implies the existence of commen-
surabilities other than those given by Eq. (3.2). We'
have excluded this possibility. We, therefore, conclude
that if A‘"+1 is independent of @ through order " then
it is independent of @ through order e"t!. Now
h(P, Q, K, 0, ) is certainly independent of . through
order €. It follows by mathematical induction that
AP, Q,K, 0, ) is independent of @ through all
orders of degenerate perturbation theory.

It is now quite simple to demonstrate the possible
existence of degenerate invariants, If the transforma-
tion from the original variables p, q, J, ¢ to the
average variables P, Q, K, ¢ can be made canonical
to all orders, then there are s — m linearly independent
combinations of the K’s (i=1,---,s) which are
constant to all orders in degenerate perturbation
theory. These invariants are the momenta conjugate to
the u;’s defined earlier. They are constant because the
Hamiltonian A(P, Q, K, 8, ) is cyclic in the p,’s
to all orders.

The discussions given above can be extended in a
straightforward fashion to degenerate systems whose
Hamiltonians contain an adiabatic time dependence
or whose Hamiltonians contain a weak harmonic
time dependence. In the latter case one must allow
for forced resonance. In both these cases one is
forced to prove rather weak results, namely that
degenerate invariants exist provided that the trans-
formation to the average variables can be made
canonical.

4. THE ADIABATIC OSCILLATOR

As a simple illustration of the techniques which we
have been considering we now discuss an oscillator
whose frequency is a slowly varying function of time.
In the g — p representation, the Hamiltonian which
describes the oscillator has the form

Hy = 1p* + 10D, 4.1

where

T = e, (4.2)

is the slow time. The Hamiltonian (4.1) is not in the
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standard form required for the application of per-
turbation theory. To put the Hamiltonian in standard
form we introduce the new momentum

Jy = @my* 56 pdg, @3)

where the integral is performed over one period of the
time-independent problem. In order to perform this
integral we set

Hy = Wy, T). (4.4)
We find from (4.1) that
p = £2QW, — o¥g?h. 4.5)
Upon setting
g = (2QW,/w?)t sin 6, (4.6)
we find that
p=QWycos . 4.7
Thus

27
J, = (2Wo/21-rw)f cos® 8 db
0

= W,/ow. 4.8)

The function S,, which generates the new canonical
momentum J; and its conjugate coordinate 1, is
found from the differential equation

05,

p=22= (20 — o’
dq

4.9

This equation has the solution
So = H9@J10 — w*g? + 27 sin” (g%w/27,)]
(4.10)
»
The angle variable y, conjugate to J; is found from
Eq. (4.10) to be

2 \}
Y1 = % = sin* (g_w) )

4.11
o, (4.11)

The Hamiltonian in the J; — y; representation is

N
Hy = Wy(Jy, T) +€5?0

= J,o(T) + e(zﬂ) Josin 2y,  (4.12)
W

where
, _ do

== (4.13)

w

The Hamiltonian (4.12) is in the standard form
required for application of the method of averaging.
The equations of motion are found from (4.12) to be

(4.14a)
(4.14b)

J, = —e(w'[w)]; cos 29, ,
P = o(T) + (0'2w) sin 2y, .
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According to the remarks made in Sec. 2, we should
seek solutions of (4.14) in the form

Jy=K+3eF"K, ¢, T), (4.153)
n=1

=6+ 2"G"(K, $,T),  (4.15b)
n=1

where the F*’s and G™’s are required to be periodic
functions of ¢. We further require that

K= % "A"(K, T), (4.16a)
n=1
é = o(T) + EG"B‘"’(K, 7). (4.16b)
n=1

These equations when substituted into (4.14) produce
an infinite set of coupled differential equations. The
first-order members of this set are

&) '
A(l) + oF = — (QL)K CcOos 2¢, (4173)
0é o

aG(l) o’ .
B - ._) 24. 4.17b
+ % (2(» sin 2¢ ( )

The solutions of Eqs. (4.17) are
AW = B = ¢, (4.18)
FO = —(o'[20)Ksin2¢,  (4.19a)
GV = —(w'[4w?) cos 2. (4.19b)

The transformation determined by (4.19) is canoni-
cal through first order. According to the results
proved in Sec. 2, K must be constant through order e.
This is easily seen to be true since 4V = 0. However,
we can show that K is constant through first order in
a more illuminating way. Let us first invert the
transformation (4.15). We find that

K =J; + &(o'[20%)J; sin 29, + O(e?). (4.20)

Now let us introduce the new momentum

27
Jo = (Q2m “lf Jidy,. (4.21)
0
If we set
H, = Wl(Jza T), (422)
we find that
m (4.23)

Js = .
o[l — (ew’/2w2)2]*

The generating function §; which produces the
momentum J, and its canonically conjugate coordi-
nate v, from J; and y, is found from the differential
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equation
)
oy,
= ust - . 4.24)
o[l + (ew'[20?) sin 2y,]
This equation has the solution
’ 2
S, = J,tan™ {M} (4.25)
[1 = (e’/200%)’]
The variable g, conjugate to J; is
as,
Y=,
’ 2
= tan! {t_—an Y1 F € /2w%}. (4.26)
[1 — (ew'[200%)°]

The Hamiltonian in the J, — , representation is

3s,

Hy=W(Js, T) + e T

- ]
. ([1 - (e(j’/zw%?]‘l’ (1w—/2(2)2 ;322’;2)}
(4.27)

The point to observe here is that J, = —0H,/dy, is
rigorously of order €2 Now from (4.23) and (4.12) we
observe that

Jy = J, + (0’ 20®)J, sin 2y, + O(e?). (4.28)
Upon comparing (4.20) with (4.28) we see that

K=1J,+ 0(e). (4.29)

In other words, K defined by (4.20) is the first-order
approximant to J, which is rigorously constant
through order e.

Now let us proceed to second-order perturbation
theory. The second-order perturbation equations are

aF(z) 0
a4 oT

oG® 0 [ow
T _ 2 (2 cos2
“ 4 aT(4w2) cos 2¢

= —('[20)(w’[20?) cos? 2¢. (4.30b)

AP + o — ( )Ksm 2¢ =0, (4.30a)

B(z) +
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These equations have the solutions

A® =0, (4.31a)
BY® = _ (i’;) (2“;2), (4.31b)
1 d '\

Fo - L —( )K 2 (— K, (4.32a

20 dT\2 cos 24 + w® ( )

1 d o'\
(2) - — == 1
G = - dT(Zw) 24 (wz) sin 4. (4.32b)

The zero harmonic of F'? has been chosen so that the
transformation is canonical through second order.
The transformation (4.15a) through second order is

Jy —K—-e(2 )Ksm2¢

— {le ddT( )K cos2¢ — —(%;)2K} + 0(),
(4.33a)
Po=¢ — 6(4(») cos 2¢

+ € {41 d‘;( )sm2¢

- l(ﬂ) sin 4¢} + O(). (433b)
16 \w®

The quantity K defined by (4.33) is constant through

order €2, This is seen by the fact that 4V = 4@ = 0,

We can gain some further insight into the nature of

K by introducing the momentum

27
= (= _lj Jody,. (4.34)
Upon setting H, = Wy(J;, T) we find that
2W,
= , (4.35
o[l — (ew'20*?F(4a — b} (4.33)
where
d(w'20%/dT
=1 e 4.36
e — e
3 2
(a) [20°) d(w'[20%)]dT . (4.36b)

[1 — (w2071

The quantity J; is defined such that J, is rigorously of
order €. If we expand (4.35) and retain terms through
second order, then we find that

J3 = JI{I + e( ) sin 2y,
2w

() men 3] oo
(4.37)
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Now let us invert the transformation (4.33). We find
that

o'\ .
K = Jl{l + 6(2—0)2) sin 21/)1

1 d ’ 1 1 \2
+ [g 5(2%) cos 29, + 2(2&;_)]} + ().
(4.38)

In other words, K is the second-order approximant
to the quantity J; which is known to be rigorously
constant through second order.

This process can be continued by defining a se-
quence of canonical transformations such that

27
Jn = (277 —1'[) Jn—l dw'n—l .

This sequence is such that J, = O(e"). Furthermore,
canonical perturbation theory carried through order
¢" ! produces the (n — 1)th approximant to J,. We
see then that we have two ways of producing quan-
tities which are invariant to any desired order. One
way is to do perturbation theory, the other is to con-
struct the sequence of J,’s. Both techniques become
rather tedious at higher orders. Perturbation theory,
however, involves much simpler integrations than
does the construction of the J,’s. This is evident even
in the simple problem which we have discussed here.

We conclude this section by choosing an explicit
time dependence for w(ef) and by discussing the sense
in which the perturbation solution represents the
exact solution. We choose w such that

o = wi(l — u) + oiu — }* + SHu( — u), (4.40)
where

(4.39)

u=(1+eH 4.41)
In order that w? > O for all times we require that
7+ € < (wy + w2 4.42)

The oscillator described by (4.40) is such that its
frequency changes in a continuous fashion from an
initial (f = —o0) constant value w, to a final (z =
+ o) constant value w, .

The differential equation with which we are con-
cerned is
d’x 2 2 2, 2
T [wo(1 — u) + oju — 307" + )u(l — w)lx = 0.

(4.43)

This equation has been discussed by Eckart!® in

14 The hierarchy of invariants J, generated by this process is
mathematically equivalent to the hierarchy of invariants produced
by Gardner (Ref. 5). However, our technique for generating the
hierarchy is different from that used by Gardner.

1% C. Eckart, Phys. Rev. 35, 1303 (1930).
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connection with the penetration of electrons through
a potential barrier, by Epstein'® in connection with
wave propagation in inhomogeneous media, and
most recently by Backus, Lenard, and Kulsrud!? in
connection with the adiabatic invariance of the
magnetic moment. It is found that the solutions of
(4.43) are expressible in terms of the hypergeometric
function. We choose the particular solution'®

x = Alm [ (1 — uy™VF(a; b; c; u)], (4.44)

where A is a real constant, F(a; b; c; u) is the hyper-
geometric function, and

1 i20¢— 2w, + 7
== 4 ——, 4.45
a > + > (4.45)

1 i2wy— 2w, —7
b==4-—"2——1"7 4.46
2 2 € (4.46)
c=14 2% (4.47)

€
This solution has the property that

lim x = A sin wgt. (4.48)

i=—w

We must now examine the perturbation solution.
We have from (4.11) that

x = (2J]w)? sin yp. (4.49)
Upon making use of (4.15) and (4.19) we find that

J= K(l —e 2—“’—% sin 2¢) + 0(e), (4.50)
W

p=¢ —¢ 42—2 cos 2¢ + O(ed). (4.50b)
10}

If we substitute (4.50a) and (4.50b) into (4.49) and
retain terms through order ¢, we find that the per-
turbation solution x,, is given by

X, = (gf)&l:sin ¢ —eu(l —u)

y 4o} — 40} + n*Qu — 1)
320

cos ¢:| + 0(&d),

(4.51)
where

é = f » dt + 0. (4.52)
In order to compare (4.51) with (4.44) we must
evaluate ¢. This can best be done by introducing u

18 p_S. Epstein, Proc. Natl. Acad. Sci. 16, 627 (1930).

17 G. Backus, A. Lenard, and R. Kulsrud, Z. Naturforsch. 15a,
1007 (1960).

18 By Im we mean ‘‘imaginary part of.”
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as the independent variable. We find that

¢= i(f%d" +f1wjuu)'

The integrals involved in (4.53) are easily evaluated.
The result is

(4.53)

¢=%°logu —a-E)—llog(l —u)

n
e
2e g

[2w§ — 2wf + §n° — n%u ~ 217w:,
2wy — w1 — ) (wy + @y — 47)

_ W [ (g + w1 + In)(wy + 0, — 37) :I
€ 20,0 + 207 — (0F — wf + 7)1 — u)

+ﬂlog[
€

4l ]
Q2 — ww? + 0¥ — ’u + 2040)
(4.54)

where the integration constant has been chosen such
that

lim ¢ = wt. (4.55)

t—+—o0

When we substitute (4.54) into (4.51) we find that

w

2 _ 4.2 2 _ )
x [1 _ eu(l _ u) 4601 46()0 + "7 (2u 1) ezw/Z]}’

320°
(4.56)
where

fw) = Z1og [

4w] :I
2 — Wi + olu — Iu + 20,0
Dy g [ (g + @ + ) (w5 + wy — 31) j]
¢ 8 2w + 20 — (@} — wi + 201 — )
_ My I:Zwﬁ — 202 + In® — Pu — anjl.
2e 2wo — w; — In)(wo + @y — 1)
(4.57)

We see immediately that (4.56) agrees with the
exact solution (4.44) at t = —co, provided that we
choose K such that

Kt = ola. (4.58)

In order to investigate the connection between (4.56)
and (4.44) for — 0 <t € o, we must examine the
hypergeometric function. Clearly, as € — 0, the con-
stants a, b, and c¢ develop large imaginary parts.
We should, therefore, seek the asymptotic expansion
of the hypergeometric function with large constants.
In order to do this we employ the integral representa-
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tion of the hypergeometric function.!? In our case

1
L) g(De™ e d, (4.59)

M e — 5 s

where
g(® = [t(1 — (1 — w)I ¥, (4.60)
h(t) = log [{*(1 — " (1 — tw)?], (4.61)
and
o= w,— w, + 17, (4.62a)
f=wy— w, — 37, (4.62b)
y = 2w,. (4.62¢)
If k() is such that
dh B y—28 ou
a1 tiCe ¢®

is zero at some point 0 < 7 < 1, then we can employ
the method of stationary phase to evaluate the integral
in (4.59) as € — 0.2 Clearly when 8 > 0, (0 < u < 1),
there is a stationary point in the interval of integration.
The case when 8 < 0can be approached by the method
of steepest descents. However, except for some rather
special values of w, and w,, the contours involved are
rather complex. Therefore, we restrict our discussion
to the case § > 0. This case encompasses an infinite
number of oscillatory systems and is certainly adequate
for a discussion of the connection between the per-
turbation solution and the exact solution.

The stationary point is readily found from (4.63) to
be

;= 2wy — qu — 20
2wy + w; — dn)u

In general, the primary contribution to an integral
like (4.59) comes from the end points and from the
stationary point. In our case the end points do not
contribute. We have, therefore, only to consider the
contribution from the stationary point. If we intro-
duce a new variable w such that

(4.64)

w? = h(r) — h(1), (4.65)
then the integral in (4.59) becomes
1
b = f g(H)e™ Ve qt
0
= el f wzg(t(w))e‘“”g’e—q—t- dw, (4.66)
wy aw
where
wy = —(h() — h(0))}, (4.67a)
Wy = (h(r) — h())2. (4.67b)

1% See P. M. Morse and H. Feshbach, Methods of Theoretical
Physics (McGraw-Hill Book Co., Inc., New York, 1953), p. 591,
Eq. (5.3.16).

20 For a discussion of the method of stationary phase, see E. T.
Copson, Asymptotic Expansions (Cambridge University Press,
London, England, 1965). See also A. Erdélyi, Asymptotic Expansions
(Dover Publications, Inc., New York, 1956).
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By the usual methods?! we can invert (4.65) to express
t as a power series in w. The result is

=7r4+aw+aw+awt+---, (4.68)
where
ay = 2/—h"@OF, (4.692)
a; =0, (4.69b)
3 2 (
4y = ao{i @O | 1 K9 } (4.69)
36 [—h"(DF | 12 (h"(D)?

We now substitute (4.68) into (4.66) and extend the
limits of integration from — oo to + oo, since the con-
tribution to the integral comes only from the neighbor-
hood of the stationary point. The result is

® = (re)g(r)a, exp z(ﬁ(f-) — ;—’)
X {1 - ;l:% -+ %%aﬁ] exp%” + 0(52)}.

(4.70)
We must now examine the coefficient of ® in (4.59).
Using the asymptotic expansion of I'(z) for large
|z|, we find that??
I'(c)
T'®G)'(c — b)

- @565 w5 o]
X exp [iflog (;—z_z_,é) - ieélog (ﬁ) + l:{l
4.71)

If we now substitute (4.70) and (4.71) into (4.59) and
retain terms through order e, we find that

F(a; b; ¢; u) = wlg(na,[l — eBe™? + O()] exp -
€

dwd (1 —17)
o1
% {“’ o8 [(wo + o + (@ — w0 — dm) 1 - m]
_ wotwoitdy
@ log [wo o — (L =1 — Tu)]

_Thog l:wo + o, 4+ n (1 — Tu)]}’ 4.72)

wy—w,—ip 1—7
where
_ 120 — 40} — 4oy — n?
24wy(4ol — 4wt — dom — 77
1[3a, , 1g'(n) 2:|
4129 280 )
2[ a 28

21 See Ref. 19, pp. 41111
32 See Ref. 19, p. 443.

(4.73)
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Upon making use of (4.64) we are able, after some
rather tedious algebra, to make the following identi-
fications:

g(a(r) = wi?, (4.74)
(1 — 1)
1—7u
— (w0 + w21 + %”Z)(wo —2w1 —in) , (4.75)
2 — Wi + wju — Iu + 20,0
(A — (1 — 7u)
- (wo = “2’1 - ‘}‘Z)(wo ':' Wy —2 1n) , (4.76)
20,0 + 207 — (0] — wp + )1 — u)
(1 — Tu)
1—7
_ 203 — 20} + 3* — n*u — 2% @77
2w + oy + n)(wo + 1 — i) ’
Beu(l —wiei=d0itn@u—1 00

2wt

Upon substituting this information into (4.72) we find
that the asymptotic expansion of the exact solution is

x = A(wolw)* Im =u‘°’°/‘(1 — y)ier/egiftn)

40l — 40} + 7*2u — 1)
320°

X [1 — eu(l — u)
L 0(3)]}, (4.79)

where f(u) is given by (4.57). The constant A is related
to K by (4.58). We see then that (4.79) is identical,
through first order, with the perturbation solution.
Perturbation theory is simply constructing the asymp-
totic expansion of the exact solution. Perhaps the
most interesting aspect of this example is that the .
perturbation solution is asymptotic to the exact
solution for all times. This is a much stronger result
than is obtained from the usual theorems of asymp-
totic convergence. These theorems generally conclude
that the perturbation solution is asymptotic to the
exact solution for times of order 1/e. Our discussion
of the adiabatic oscillator indicates that there are
classes of differential equations for which the general
theorems of asymptotic convergence can be improved.

We conclude our discussion with a few remarks
about the final state of the oscillator. The exact
solution of the final state is

x = AIm {€“*F(a; b; c; 1)}. (4.80)
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By using the analytic continuation of F(a;b;c;u)
through the singular point at u = 1, we can write
(4.80) in the form?®

F(c)['(c —a — b) gt
T'(c — a)F(c — b)
P0G +b = ©) oy
D(a)l'(b)
If we now examine this expression, we find that per-
turbation theory is giving us only the contribution
from the first term in (4.81). The reason why we do
not get a contribution from the second term is easily
found by examining the magnitude of this term.
Using the relations
I'z)'(—z) = —n/z sin (72),
LG+ LG — 2) = m/cos (m2),

it is straightforward to show that

T'el'(a + b - ¢
T(a)I'(b)

cosh (Z) (wo -~ w; + "—7-) cosh (7_7-) (wo -, — ?_7_)
€ 2 € 2

sinh (27w,/e) sinh 27w, fe)

x=AIm{

,. 4.81)

Wo

2

Wy

X
(4.82)

If we now consider the limit of (4.82) as € — 0, we

find that

L(c)l'(a + b —¢)
L(a)l'(b)

This expression vanishes faster than any power of e.

Perturbation theory, which orders things in powers of

2
= Do o (4.83)
Wy

€0

13 See Ref. 19, p. 546, Eq. (5.2.49).
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¢, would never construct such a function. We have
here a typical example of how perturbation theory
can construct quantities which are invariant to all
orders in € and yet are not rigorous constants of the

motion.
5. CONCLUSION

We have discussed the application of the method of
averaging as developed in I to nearly multiple-periodic
Hamiltonian systems. In the case of nondegenerate
systems we have demonstrated the existence of a
quantity which is invariant to all orders in perturba-
tion theory for each angular degree of freedom.
These invariants resulted directly from the fact that
nondegenerate perturbation theory can be made
canonical to all orders. In the case where the system
has an m-fold degeneracy we have shown that the
Hamiltonian, when expressed in terms of the average
variables, depends on the angle variables only through
their m degenerate combinations. Thus if there are s
angular degrees of freedom, then there will be s — m
invariants to all orders provided that degenerate
perturbation theory can be made canonical to all
orders. However, the question of when degenerate
perturbation theory can be made canonical is left
unanswered.

The techniques which were developed were applied
to the simple problem of a harmonic oscillator whose
frequency varies slowly with time. It was shown that
the perturbation theory, when applied to a special
time-dependent oscillator, produced a solution which
was asymptotic to the exact solution for all time.
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More solutions of isoperimetric problems are obtained which lead to several extensions and refine-
ments of previous results in the thermodynamics of plasmas: (1) Energy requirement for density fluctua-
tions in a relativistic plasma is determined. At the typical relativistic temperature of kT = mc? it becomes
~nkT([Bn][n)? as compared with the previous nonrelativistic value of ~2nkT(JAn|/n)%. (2) An optimum
expression for the free energy in a plasma is derived in terms of familiar thermodynamic variables. (3) For
a collisional plasma, the energy requirement again assumes the same general form and is equal to

nkT(An][n)*.

INTRODUCTION

The thermodynamic approach to plasma physics'~®
makes use of the constraints inherent in the equation
of motion for a plasma. The existence of constraints
imposes bounds on important quantities of physical
interest. Information of this kind can be useful in
plasma research, particularly in the area of thermo-
nuclear work. We do not consider the physical aspects
of the theory here as this has already been done in
previous papers on the subject. This note only reports
on some mathematical solutions which lead to
several extensions or refinements of earlier results.
We are dealing with the following problems. First,
it was previously shown that a plasma obeying the
nonrelativistic Vlasov equation requires a certain
minimum amount of energy associated with its
nonlinear density fluctuations. If Liouville’s theorem
on the conservation of phase space is used as the
constraint, this lower bound on the energy is found

to be ~2nkT([An}/n)2. The question then arises:
For very-high-temperature plasmas (kT ~ mc?) how
would this expression modify in accordance with its
relativistic nature? We surmised that the quadratic

dependence on JAn| would be retained, but the numeri-
cal factor may be changed. As it turns out, AE 2

nkT(|An|/n)? for kT = mc* with a numerical factor
about twice that of the nonrelativistic case. Second,
for a plasma which obeys the H-theorem, we seek
the optimum bound on its free energy. The expres-
sion we found is in terms of the initial entropy,

* Present address: Physics Department, Georgetown University,
Washington, D.C.

1 T. K. Fowler, J. Math. Phys. 4, 559 (1963).

2 T. K. Fowler, Phys. Fluids 8, 459 (1965).

3 R. L. W. Chen, J. Math. Phys. 8, 2410 (1967).

¢ R. L. W. Chen, Phys. Fluids 9, 761 (1966).

8 C. S. Gardner, Phys. Fluids 6, 839 (1963).

8 T. K. Fowler and G. E. Guest, Plasma Physics and Controlled
Nuclear Fusion Research, Vol. I (International Atomic Energy
Agency, Vienna, 1966).

energy, volume, and the number of particles of the
plasma:

Ey — (3m/Am)N* V8 exp [(28,/3kn) — 1.

It in fact corresponds to the minimum value of the
plasma Lyapunov function of Fowler. Third, similar
to the first problem, we consider the modification of
the energy expression when particle collisions are
taken into account. We again obtain the quadratic
dependence on |An|, which confirms our expectation
that this is a general feature of the plasma, not at all
a peculiarity connected with the nonrelativistic
collisionless plasma treated previously.® The actual

expression we found is Ink T(|An|[n)2.

1. RELATIVISTIC PLASMA?

For a plasma which obeys the relativistic Vlasov
equation,® its motion in the r, u space is measure-
preserving, just as the motion of nonrelativistic plasma
in r, v space, u being the relativistic velocity u =
v = [1 — (0¥/c?)]?v. The isoperimetric problem to
be solved is as follows:

Let f(r,u) be a nonnegative function of r and u
which physically stands for the particle distribution.
Determine f which minimizes the kinetic energy &,

&= ! f mei(y — 1)f(r, u) & d®u,

under the constraints
®(a) = const,

(1.1)

12)
Where ®(x) is defined as the measure of the point set

|An| = const.

? This section is based on the Master’s thesis of T. H. Neighbors
at Emory University.

8 P. C. Clemmow and A. J. Wilson, Proc. Cambridge Phil. Soc.
53, 222 (1957).
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in the r, u phase space {r, u:f(r, u) > «}. An is the
deviation of the number density

n =Jf(r, w) d’u

from its mean. L3 is the volume in r space, to which the
r integration is confined. Similar to the nonrelativistic
problem, ®(x) is set equal to that of a Maxwellian.
The relativistic Maxwellian is®
2
mc’y
x —
P ( kT )

where m, k, T are, respectively, particle mass, Boltz-
mann constant, and temperature, and K, is the
modified Bessel function. The corresponding @, to
be designated as @, is found to be

nm .
dmckT Ky(mc*[kT)

So(u) =

nm

00 = o[ (22T )

The expression (kT/mc?) is henceforth denoted by §.
If one divides L® into two regions I and II, wherein
An is negative and nonnegative, respectively—the
ratio of the volumes of I and II being fixed at the
constant value w——then, it was shown in the non-
relativistic case, the minimizing f(r, v) must be of the
form of two monotone functions of ». This remains
true in the relativistic case. We thus restrict ourselves
to considering f(r, u) of the form f,(v) and f(w) in
regions I and II, respectively. Under the circumstan-
ces, & becomes dependent on a function of only one
variable, ¢(«) where ¢(«) is defined as ¢, (= D,L-3)
minus the measure in u space of the point set
{u:fy(w) > «}. With suitable choice of variables x
and y,

x=fln (‘m;m—K—B@),

x 47,2
y= =3P T az,
[} n

the kinetic energy per unit volume E = 6L~ becomes

nkTp* J‘
= ——— | F(x, y,y) dx, (1.3)
1+ wK,
and the second constraint in (1.2) becomes
1
— | G(x, y)dx = b, (1.4)
|

* 3. L. Synge, The Relativistic Gas (North-Holland Publishing
Co., Amsterdam, 1957).
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where

F = w(uy — Dle*bx(x* — 1)} — 3y'et]

+ (uy — DEex(x* — DF + Jwye),

G = }ye™?
The mathematical problem is to minimize (1.3) under
the constraint (1.4). y(x) is the unknown function to
be determined. The solution must satisfy certain
conditions in order to be acceptable. ¢o(a) — ¢(x)
must be monotonically increasing with respect to « in
accordance with its definition. ¢'(a) is, therefore,
bounded. The appropriate solution can be found,
based on a theorem due to Weierstrass®:

Theorem: If the minimizing curve has a segment in
common with the boundary R, then along this seg-
ment the following condition must be satisfied:

F,— di F, 2 0, if Rlies above the segment,
x

F, — di F, <0, ifRlies below the segment,
x

subject to the requirement that the Weierstrass E
Junction must be equal to zero at the end points of the
segment. The Weierstrass E function is defined as

Fx, 1, ¥) — FCx, 1, 8) — (7 — D) g% * 3. D).

& is the integrand of the functional being considered,
which is F = AG in the present case. Our solution
consists of two segments. The first one with x between
1 and x,, x4 > 1, lies in common with the boundary,

i.e., p(a) = do(a) or
y=(x*—Di (1.5a)

The second segment with x between x, and oo is
found by solving the Euler equation:

7] df o
—(F+1G)— —|—(F+ )| = 0.
o (F+16) dx[ay,( + )]

We obtain
(1.5b)

w(uy — ) = —A.
X, is related to 4 as
xe = [27¥(A2 — 22) + 1}

It can be readily verified that (1.5a) satisfies the Weier-
strass conditions and (1.5b) possesses zero first variation

18 O, Bolza, Lectures on the Calculus of Variations (G. E. Stechert
and Co., New York, 1946), pp. 41-43.



ISOPERIMETRIC SOLUTIONS IN PLASMAS

TaBLE I. Numerical values of b

and the corresponding values of
AE[nkTcomputed electronically.
b AE[nkT
0 0
0.099 0.012
0.239 0.062
0.3447 0.118
0.5070 0.257
0.6810 0.496
0.7976 0.741
0.9019 1.057

and positive second variation. When this solution is
substituted in (1.3) and (1.4), we obtain two quadra-
tures which relate E and b to the value of A. For the
case of w = 1 we have

_ nkTg?
KoB)

nkTB® [* . 33
LLZV g e —1
6K(6) "o([( +7°) 1

FIA+a) +A—1{a + ) +ap - 13t
x [(1 + gt + A4 + tytyhe X ay

E f "1+ 282 — 1) — 1]ex(x? — D} dx
1

-+

and
x =Y a + o+ - e pt + 13
where

n=— D4y,
7o = 2(x% — DY,

2,
b= f "X _ ybx dx
ﬂKz 1

1 ® — 3 2 __ 113
66Kz.£.,(1 (A +oH + 2 = 1)

x [(1 + 7Y + ADe X/ ay, (1.6)

We have chosen to evaluate E and b numerically at a
typical relativistic temperature kT = mc? or f = 1.
Samples of these values are given in Table I, which
are taken from a more extensive set of data of elec-
tronic calculations. From this we obtain, to a good
approximation, the following expression (in the same
manner as in Ref, 3):

-+

AE =~ nkT([An|jn)?, for kT =mc®. (1.7)

This may be compared to the nonrelativistic case of?

AE =~ $nkT(|An][n)2.
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2. FREE ENERGY

We seek the minimum FE under the constraints
N == const and § = const, where

E= f [3mo® + w(0)1f &r d°, (A}
S=—k f flafdr &, (2.22)
N= f Fdr &b, (2.2b)

where f = f(r, v) is the function to be varied and #(r)
denotes the potential of an external conservative force
field (if present). By standard methods of Lagrange
multipliers we obtain

f = ve ™, 2.3)

where » and u are both positive constants, and
€ = tmv? + w(r). The values of v and u are related
to S and N. For most situations of physical interest,
= is negligible, and it is possible to manipulate the
interdependence between S, N, v, p,and E so that E
becomes expressible in terms of § and N. We obtain

Im 5 % 28 )
Epin(S, N)=— NV exp |——— 1), (24
wnl, W) = 2 MV terp (25— 1), 2
where ¥ is the volume to which the plasma is confined.
E,in in (2.4) increases with S. Hence, for a plasma
which obeys the H-theorem we have

St > SO:
Et > Emin(St= N) > Emin(S()’ N)’

where the subscript 0 and ¢ indicate the initial time

and any later time, respectively. The free energy

available for driving instabilities is therefore

N%V“} exp (&S—Q- - 1),
3kN

where Ey and S, are completely determined by the

initial distribution fy(r, v).

With a nonzero =(r) the monotonic-increasing
character of E_, can also be established. Sub-
stituting (2.3) in (2.1) and (2.2), and taking the partial
derivative (0S/0u)y, keeping N fixed, we get

(8_5) = --k‘ufezve"“ d°r d% = ky (-a-g'i‘ﬂ) .
ou/n ou )
It follows that

3m

E, (2.5)

" 4m

(aEmin) = _}_ > 0’
oS v ku

which proves the point. Thus, the free energy as
Ey — Ep;,(Sy, N) is generally valid, although the ex-
plicit expression for E_;, may not be obtainable.
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The bound is the closest one possible if the H-
theorem and the conservation of particles are assumed
to be the only constraints. It can be shown to be
equivalent to the minimized value of the plasma
Lyapunov function of Fowler,:2 attainable by the
most judicious choice of parameters T and C.

3. AE OF COLLISIONAL PLASMA

In calculating the additional energy associated with
density fluctuations in a collisional plasma, we have
the following problem which is analogous to that in
Section 1.

Determine f(r, v) which minimizes &:

&= f f smof(x, v) & o (3.1)
o
under the constraints
N = const,
S = const, 3.2)
M = const.

We note that for a collisional plasma S actually
increases rather than remaining constant. But this
makes no difference insofar as finding the lower bound
on AE is concerned.

Consider again the two regions as in Sec. 1. Let
N,, N, S;, S, be the respective N and S in region I
and region II, respectively. Sy, for example, is defined
as

- kﬂflnfd% &,
rey

with r confined to I and v over all v space. The mini-
mum & for given N;, N,, S, Sz, and w, in accordance
with the result of (2.4), is

- S
8=§E[N3( Y l?) cxp(zs1 —1)
4 14w 3kN,
3
s/ 1 28,
N——D) ¢ 2 —1). 3.3
+ 2(1+w ) *P (3,41\12 (3-3)

T. H. NEIGHBORS III

We then minimize (3.3) further by varying N;, N,,
S1, Sz, and w subject to the conditions of (3.2). These
conditions, in terms of N;, N;, S;, S, and w, now
become

S; + S, = S = const,
N; 4+ N, = N = const,

N) _(Nz_l-ll-wN)]

= |An| = const.

w
14w

L“"[(Nl -

The problem is now reduced to minimizing a function
of several variables under some constraints and can be
solved in a comparatively straightforward manner.
After a fair amount of manipulation, we obtain a

series expansion of the minimized E (= §L-3):
2
—1)-[1+1(E\1') +]
3\ n

% ex 25
P (3kn
where s = SL3 is the entropy density.® The linear
term in the bracket is zero and, as shown by exact
numerical work, the higher terms contribute no more
than a few percent. The expression preceding the
bracket is, in fact, the kinetic energy density of a uni-
form Maxwellian gas, and can be expressed in terms
of its temperature as 3nkT. The requirement for
additional energy beyond that of the uniform state is,
therefore,

w

AE o jnkT(1An][n)®.
We again note that the collisionless case has
AE =~ 3nkT({An|[n).

We conclude that nkT(|An|/n)? dependence is a ubig-
uitous feature of AE in all kinds of plasma. There are
some differences, however, in the value of the numeri-
cal factor.
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The dimer problem can be solved if one can evaluate the permanent of P = (p;;), the incidence matrix
of the lattice. All known methods of solving the two-dimensional case consist (explicitly or implicitly)
in finding another matrix Q = (g,;), such that p;; = |g;| and per P = |det Q|, and then computing
the determinant of Q. We show that in the three-dimensional case no such matrix Q exists for any choice
of elements g;;, whether real or complex numbers, or quaternions. A stronger negative result of an
asymptotic character seems to be true, but this rests upon a plausible but unproved conjecture.

INTRODUCTION AND STATEMENT OF
RESULTS

Let a, b, ¢ be positive integers with N = abc even,
and define the lattice L to be the set of N points in
three-dimensional Euclidean space with integer co-
ordinates (x,y,z) such that 1 < x<a, 1 <y <b,
1 £ z < ¢. A dimer is a pair of points of L which are
unit distance apart; and a dimer configuration is a
partitioning of L into N disjoint dimers. Let f denote
the number of dimer configurations on L. It can be
proved! that N~ log f tends to a limit (denoted by 4)
as a— ©, b— o0, c¢— oo independently. (For
brevity, we hereafter write N — oo to signify a, b,
¢ — .) The dimer problem is to determine f as a
function of a, b, ¢ and hence (or otherwise) to calcu-
late 4.

Number the points of L from 1 to N in a fixed
arbitrary way, and write p,; = 1 or 0, according as the
ith and jth points of: L are or are not unit distance
apart. The N x N matrix P = (p,;) is called the
incidence matrix of L; and it can be shown? that
f?* = per P, the permanent of P. Thus a solution of
the dimer problem is equivalent to an evaluation of
this permanent. Unlike determinants, to which they
bear a superficial algebraic resemblance, permanents
do not enjoy any practicable algorithms for their
evaluation when N is large. However, most of the
elements of P are zero, and this has suggested the
possibility of finding another matrix Q, such that

Pis =g, and per P = [det Q|, ¢y

and so calculating f via det Q. Here the g,; are real or
complex numbers or quaternions; and, if g is a real
or complex number, |g| denotes its modulus in the

* This investigation was partially supported by research grant
No. GM 10525-05 from the National Institutes of Health, Public
Health Service.

1J. M. Hammersley, ‘“Existence Theorems and Monte Carlo
Methods for the Monomer-Dimer Problem’ in Research Papers in
Statistics: Festschrift for J. Neyman (John Wiley & Sons, Inc., New
York, 1966), pp. 125-146.

2 J. M. Hammersley, Proc. Cambridge Phil. Soc. 64, 455 (1968).

ordinary sense; while, if ¢ is a quaternion, its modulus
|g| is the positive square root of its norm. (The possi-
bility of using quaternions in this context has not, so
far as we know, been mentioned in the literature, but
from private conversations we know that this idea has
occurred independently to several colleagues; for,
indeed, there are anticommuting features in the dimer
problem which lend appeal to use of quaternions as
a tool.) We discuss below two methods of defining the
determinant of a matrix of quaternions.

In the two-dimensional case (i.e., when @ = 1 and
only b — oo and ¢ — c0) all known methods of solving
the dimer problem depend, explicitly or implicitly, on
finding a solution of (1), and a variety of such real
and complex solutions are known. Here we prove that
no solutions exist in the three-dimensional case:
specifically, we show that, when a > 2, b > 4, and
¢ > 4, then '

Pii = |9:;| = per P > |det Q, ¥))

for any choice of real or complex or quaternion Q.
This does not, however, completely dispose of (1) as
a device for computing 2; for, despite (2), it might
still be true that

lim sup 4N log |det Q| = lim 1N 'log per P = 4,
N-w N—=+w (3)

when p;; = |q,;|. We believe that (3) is actually false;
but the best we can do in this direction is to deduce the
falsity of (3) from the following plausible but unproved
conjecture. Define a block of L to be a set of 32 points
of L whose coordinates (x, y, z) satisfy § < x < £ +
2,n<Ly<n+4,{<Lz<{+ 4 for some integers
& n, {. Thus L contains (a — 1)}(b — 3)(c — 3)
different blocks when a > 2, b > 4, ¢ > 4. Given a
dimer configuration on L, we say that a particular
block is smooth if there is no dimer of the configuration
with one of its points in this block and the other point
not in the block. A dimer configuration is called
rough if no block of L is smooth. Let g denote the
number of rough configurations on L. We conjecture
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that

liminf N~logg < A.
N-+w

4)

However, we do not give here the proof that (3) is
false if (4) is true.

DETERMINANTS OF QUATERNION MATRICES

The literature contains two slightly different defi-
nitions of the determinant of a matrix Q with
quaternion elements. They are due to Moore® and
Dieudonné,? and we denote them by det,;, Q and
dety, Q, respectively. We recall that a quaternion can
be written ¢ = o + Bi + yj + 0k, where «, B, y, §
are real numbers and i, j, k are indeterminates satis-
fying i® = j2 = k* = i{jk = —1; that the conjugate of
q is § = o — i — yj — 6k; that the norm of q is
N(g) =9 =gqq = o> + 2 4 y 4 6%; and we write
|g| for the modulus of g, i.e., the positive square
root of N(g). Then |g:g2| = |geqa| = |gu| lg4| for any
quaternions ¢,, g,. We write Q* for the transposed
conjugate of a quaternion matrix Q; we call Q
Hermitian if Q = Q*, i.e., if ¢;; = ¢;;. All matrices
mentioned below are square matrices with quaternion
elements, unless the contrary is explicitly stated.

Dieudonné’s paper deals with a slightly more general
case than we need. Reduced to the quaternion case in
hand, and stripped of its abstract terminology, it
boils down to the following. If Q is a diagonal
matrix, dety, Q is defined to be |g|, where ¢ is the
product of the diagonal elements of Q. For general
Q, the value of dety Q is (by definition) unchanged
if, to any row of Q we add a constant multiple of any
other row, it being understood that the constant
multiplier (which is a quaternion) acts as a left-hand
multiplier of the row. Similarly the value is unchanged
for similar operations on columns, the constant
multiplier now being a right-hand multiplier of the
column. The value of det; Q also is unchanged by
any permutation of rows or of columns of Q. As with
ordinary determinants, these row and column
operations let us reduce a general Q to diagonal form,
and so to determine the value of det; Q. Dieudonné
shows that the foregoing requirements are self-
consistent and uniquely determine detp Q, and that
detp, (Q,Q,) = detp Q; dety, Q, for any two matrices
Ql » Q2 .

Moore’s definition applies only to the case when Q
is Hermitian. Suppose Q has N rows and N columns,
and write Z for the set {1,2,- -+, N}. Let z be some
given nonempty subset of Z, and suppose that z has

3 E. H. Moore, General Analysis, Part I (Memoirs series, Vol. 1,
The American Philosophical Society, Philadelphia, Pa., 1935).
4 J, Dieudonné, Bull. Soc. Math. de France 71, 27 (1943).
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s elements. Define

)

where i, is a selected element of z, and the sum in (5)
is taken over all permutations of the remaining
unselected elements iy, i3, * - * , i, of z. Thus there are
(s — 1)! summands in (5). The Hermitian character
of Q ensures, as Moore proves, that ¢(z, i,) is a real
number (i.e., a quaternion with 8 = 9 = é = 0) and
that g(z, i;) is independent of the choice of #; in z. We
may thus write ¢(z) in place of (z, i;) and regard the
sum in (5) as being taken over the (s — 1)! different
cycles which can be formed from the elements of z.
Next, let T be a partition of Z into disjoint nonempty
subsets z7, zT', - -+ | z¥ (whose union is Z, of course);
and define

dety, Q = % Q(Zf‘)Q(Z{) o Q(th)’

q(z, i) =3 (—1)'—1%1;,%'.:‘3 MR TR I AN

(6)

where the sum in (6) is over all possible distinct
partitions of Z. [As is usual in a partition, the order of
the parts and the order of the elements in each part is
immaterial; but the order of the parts does not affect
the definition (6), because the g(z7) are all real and
therefore commute; and the order of the elements in
each part does not affect the definition (5), because
q(z,1;) is independent of the selection 7, and the
summation in (5) is over all (s — 1)! permutations of
the remaining unselected elements.]

Moore also proves that, if Q, is an arbitrary
quaternion matrix and if Q is Hermitian, then
Q,Q7 and Q,QQ¢ are both Hermitian and

dety, (Q,QQY) = dety, (Q,Q}) dety, Q.

In particular, if we take the diagonal elements of Q, to
be all 1, and all the nondiagonal elements, except just
one of them, to be zero, then it is easy to verify from
(5) that det,, (Q,Qf) = 1. However, by choosing a
succession of such Qy’s to premultiply and postmulti-
ply Q in the fashion of Q,QQF we can reduce Q
to diagonal form, just as with ordinary Hermitian
transformations.® Since clearly det,, Q, = det, QF =
1, we can prove in this way that

detp Q = |det,, Q| @)

for any Hermitian matrix Q. It follows that the nota-
tion |det Q| may be used without ambiguity for either
|detp Q| or |det,, Q| when Q is Hermitian. (It is easy
to see from simple examples that detp, Q = det,, Q
is not always true for Hermitian matrices Q.)

5 H. W. Turnbull and A. C. Aitken, An Introduction to the Theory
of Canonical Matrices (Blackie & Son Ltd., Glasgow, 1932), p. 85.
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PROOF OF EQUATION (2)

We assume throughout thata > 2, b >4, c > 4,
and show that

Pii =1q5] and per P < |det Q| ®

leads to a contradiction. The case when the g,; are
real or complex numbers is a particular case of
quaternions g,; with y = é = 0 for all elements, since
then the modulus of the ordinary determinant of Q
coincides with dety, Q, as the above definition of the
latter shows. Hence we may suppose that Q is a qua-
ternion matrix satisfying (8). Color the points of L
black and white after the fashion of a chessboard,
i.e., all points of L at unit distance from a white point
shall be black and vice versa. We say that the ith row
of Q is black or white according as the ith point of L
is black or white. Let T be the permutation of rows of
Q which places all the black rows before all the white
rows, while leaving the relative order of the black
rows among themselves unchanged and similarly
preserving the relative order of the white rows. Apply
this permutation to the rows of Q and the same
permutation to the columns of Q. Since each dimer
contains one black and one white puint wherever it
may be on L, Q is transformed to the form

w0 9

where Q; and Q, are N X 4N quaternion matrices.
Then from (8) we have

f2=perP < |det Q| = det, Q
= detD Q, = detD Q1 detD Qz .
®

Hence there exists Q,, equal to one or another of Q,

or Q,, such that f < det;, Q, . But det;, Q, = det,, Q¥
from the definitions. Hence,

per P = f* < det Qo det QF = det (), %)
0

= detp Q" = [dety Q7 (10)

where Q" is the matrix obtained by applying the
inverse permutation 7! to both the rows and columns
of (,+ ). We have p,; = |q;;|; and Q" is Hermitian.
Thus if any solution Q of (8) exists, there is at least one
Hermitian solution of (8). Hereafter we suppose that
Q is such a Hermitian solution of (8); and accordingly
we may now interpret det Q as det,, Q.

Let Py, P;, - -, Py denote the points of L in the
fixed enumeration used for specifying the incidence
matrix P. We define an (oriented) polygon on L as a
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cyclic sequence of distinct points of L, say (£, P, - -
P,;). We further say that a polygon is a nonzero
polygon if its sides P; P, , P, P; ,---,P, P;,P;P;
are all of unit length. The cubic character of L guaran-
tees that a nonzero polygon must have an even number
of sides. We include two-sided polygons (i.e., ones
with only a pair of sides P; P, , P; P;) in our discus-
sion; indeed, nonzero two-sided polygons play an
important role, and we call them degenerate polygons.

Let = be any permutation of Z = {1,2,--+, N}.
This permutation can be written, in the usual way, as
a product of disjoint cycles ojo} - - o (including
I-cycles if they occur). This product is unique apart
from the order of its terms. A cycle in the product,
say ¢ = (Jija'*'J,), corresponds naturally to a
polygon (P; P, - - - P, ); hence, there is a one-to-one
correspondence between a permutation = and a
partition of L into disjoint oriented polygons. How-
ever, each permutation = is in one-to-one correspond-
ence with a product in the expansion of per P =
2P Penta) *° ° Pnny - Moreover, the nonzero prod-
ucts in this expansion correspond to the partitions of
L into polygons which are all nonzero polygons.

Again, in any cycle ¢ = (j, /. - * * j;) we can select
a particular element i, say the numerically smallest
element in o, and then write o = (i;i, * - - i;), where
iyip* * * iy is obtained from j, j, - - - j; by cyclic permu-
tation. Thus a cycle corresponds to a product in the
sum (5); and a permutation 7 = ¢%07 - - * o7 corre-
sponds to a term (a product of N quaternions) in the
sum obtained by substituting (5) into (6). This
correspondence is one to one and again maps the
nonzero terms in the expansion of det,, Q onto the
partitions of L into nonzero polygons.

Thus the number of nonzero products in the ex-
pansions of per P and dety, Q is f? in both cases.
Since each nonzero product in the expansion of
dety Q is a product of N unit quaternions, such a
product is a unit quaternion. It now follows from (8)
that the modulus of a sum of f? unit quaternions can
only be not less than f2? = per P if all these unit
quaternions are equal. Hence every nonzero term in
the expansion of det,, Q must equal (—1)¥'2, because
this is the value of one such particular product
obtained when all the polygons are degenerate, where-
upon each quantity in (5) takes the form

93 94,0, = —qiliaq}liz =—1
We say that a polygon on L is admissible if it is a
nonzero polygon, and if there exists a polygon-
partition of L, containing this polygon and having all

its other polygons degenerate. Consider any ad-
missible polygon with 2r sides, and suppose that
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91,92, * * g are the values of ¢;;,,"*,q, . en-
countered in following the cycle o around this polygon.
There is a polygon partition with 4N — r degenerate
polygons besides the given admissible polygon. Hence
the corresponding summand in (6) yields

(=102 @ X=D¥ 7= (=¥,
i.e.,
$@ige* Gop = (1) (12)
for any admissible polygon. In particular,
§192939s = —1 (13)
for an admissible square; and
91929391959s = +1 (14)

for an admissible hexagon (not necessarily a planar
hexagon).

Suppose temporarily thata = 2, b = 4, ¢ = 4. We
show that an admissible hexagon, whose opposite
sides are opposite sides of a cube, lies near the center of
L. This follows from the diagram in Fig. 1. Here the
points of L are denoted by crosses or circles according
to their x coordinate. It is easy to see from similar
diagrams that any square, forming a face of the cube
in the above diagram, is also admissible. Moreover,

- = -
| £ F -

(Orientation of axes)

F1g. 1. Admissible hexagon in a smooth block.
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Gn
%2
%
99
- I\
F1G. 2. Number-
ing and orientation ] A
of quaternions on %% e
a cube. A
4
9y
9 2

this diagram can be embedded in a larger polygon
partition with @ > 2, b > 4, ¢ > 4 by pairing the
points outside this 2 X 4 X 4 configuration in an
obvious fashion. So the existence of this admissible
hexagon also follows for a > 2, b >4, ¢ > 4.

Now consider the cube carrying this admissible,
hexagon, and let the g,; on its sides, with respect to the
marked orientations, be ¢;, g5, * * * , g3, as shown in
Fig. 2. From (14) we have

9:19:9:91dreds = +1 (15)
and from (13) we have
01929592 = 99:9119s = Gsdrz§sqa = —1.  (16)
Hence,
+1 = 192479111295
= 0192(39)97911(§:98)G1295(949s)
= 4192G5(9:9791:195)(9s129594)9s
= 192Gs9s = —1. 17

This contradiction denies (8) and completes the proof
of (2).
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A method is described for treating wave propagation in a waveguide structure whose cross section
varies in the direction of propagation. Special attention is given to the conversion of energy between
waveguide modes of different order. For simplicity, the waveguide is bounded by impedance-type walls
and the lateral height variation is assumed to have circular symmetry. This is considered to be an
idealized model of an atmospheric waveguide for acoustic-wave propagation in the case when there is a

localized depression.

1. INTRODUCTION

There has been a great deal of attention paid to
acoustic-wave propagation in uniform guiding struc-
tures. While the terrestrial environment does tend to
be uniformly stratified in its gross characteristics,
there are many important instances where the effective
cross section of the guide varies significantly in the
direction of propagation. A concrete example is the
propagation of sound in shallow water where there
is a sudden change in depth. An equally striking
illustration is when guided acoustic waves in the
atmosphere pass over a mountain range.

Previous work in nonuniform waveguides' has
been devoted to situations where the coupling between
the modes is sufficiently small to be ignored. In this
paper, we present a method, albeit approximate, for
handling the more general case where mode coupling
is retained. However, to simplify the discussion, we
consider a waveguide whose lower boundary is flat
but the height of the upper boundary is variable. In
order to simulate earth curvature and to allow for the
sound speed to vary with altitude, we take the wave-
number of the medium to be a specified function of
height. The lower boundary may be regarded as an
idealized smooth earth, while the variable upper
boundary is some height where there is strong coupling
between upgoing and downgoing wave types. As such,
both walls of the waveguide are assumed to be
characterized by impedance-type boundary conditions.
The validity of such a description is not investigated
here, but it has met with considerable success in
electromagnetic-wave propagation.®

1 D. E. Weston, Proc. Phys. Soc. (London) 73, 365 (1959).

2 M. Redwood, Mechanical Waveguides (Pergamon Press Ltd.,
London, 1960), pp. 89-91.

3 A. D. Pierce, J. Acoust. Soc. Am. 37, 19 (1965).

4 1. Tolstoy and C. S. Clay, Ocean Acoustics (McGraw-Hill Book
Co., Inc., New York, 1966).

5 J, R, Wait, Electromagnetic Waves in Stratified Media (Perga-
mon Press, Ltd.,London, 1962).

¢ J. R. Wait, Advances in Electronics and Electron Physics, Vol. 25,
L. Marton, Ed. (Academic Press Inc., New York, 1968).

2. FORMULATION

The situation is illustrated in Fig. 1. Essentially, we
are dealing with a parallel-plate waveguide of thick-
ness A, except for a depressed region of radius @ where
the thickness is 4,. The respective regions are des-
ignated (1) and (2). The field quantity ¢ is assumed to
satisfy a scalar wave equation

(V2 + Ky = 0, )
where k(z), the wavenumber, is a function of z only.
Boundary conditions on the horizontal surfaces are

of the type

a—w+K1p=0,

% @

where K is independent of the radial coordinate in
either region (1) or (2). For example, in dealing with
acoustic waves, where y is the velocity potential, X is
zero for a rigid surface or infinity for a free surface.
In general, K may be regarded as a boundary-
impedance parameter.

Solutions of (1) may be written in the form

p = Z,(keSp)er™G(2), 3

where Z, is a cylindrical Bessel function of order p,

E (1
{Side View} AN K
_ o by, W) T~
.FIG. 1.- The 1de:- Incident Wave 2 ()
alized height vari- — 1 7 Ko
ation considered F
in this analysis.
(The appropriate
boundary-imped- . M P
ance parameters (Plan View)
Ky, KM and K@ (2)
are indicated.) Incident Wave ]
|
pa
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while G(z) satisfies
0*G
a 2

where ko, = k(0) and S is a separation constant.
Some further consideration shows that the general
solution is of the form

+ [k*(z) — k3S®1G = O, C)

v=3 ¢ 2 (UnZ (koS mp)Gn(@, ()
p=—00

where (4,,), is a coefficient to be determined from the
boundary conditions. The summation over p involves
integers only, and the summation index m indicates
that we superimpose all ‘“‘modes.”” The latter are
exemplified by a discrete set of S,,, obtained as a
result of the boundary condition (2) which states that

%G,

oz + KGmlathorizontalsurtaces = 0. 6)

Thus, k,S&’ is the transverse wavenumber for a
waveguide mode of order m in region (1), and k,S'¥
is the corresponding wavenumber in region (2). For
convenience, we describe G,(z) as a ‘“height—gain
function” for a mode of order m and normalize it
such that G,,(0) = 1. Again, a superscript (1) or (2) is
added as appropriate.

We now imagine that a mode of order m is incident
from a distant source in region (1). The problem is to
calculate the total field everywhere. The incident field
¥ » SUitably normalized, is written

*

e
Yino = = exp (= ikoSy'p cos $)G(20Gr (), (7)
1
where the “excitation factor” A’ is a measure of the
strength of the incident mode of order m for a distant
point source located at a height z,. Summation over m
is implied.
Without difficulty,® we may demonstrate that

e
f GODGP() dz = 0, for mn, ()
0

while
hy
A( 1)

f (6D dz = )

may be regarded as a definition of the “excitation
factor” A{}) which appears in (7).
3. CONSTRUCTION OF THE SOLUTION

To deal with the specific problem posed above, we
employ an addition theorem and rewrite (7) in an

JAMES R. WAIT

equivalent form.? Thus,

A(l) +o i
Yo = 2= G20 T ¢, (keSi'p)e™*G'(2),
1 p=—c0

(10

where J, is the Bessel function of the first type. The
total field ™ in region (1) now consists of y,,, plus
a scattered field %c which must have the form

po =22 G0y 3 e
1 p=—o
X 3 (B, m)pHo(koSPp)GI(2), (11)
where H, = J, — iY, is the Hankel function of the

second kind. Here, (B,,), may be regarded as a
coefficient which describes the scattering from mode of
order m into a mode of order s for a wave whose
azimuthal variation is exp (ip¢). It may be verified that
(11) satisfies the wave equation (1), the appropriate
boundary conditions, and it gives rise to outgoing
waves as p — 00, The latter statement is a consequence
of the asymptotic relation?

lim H,(Z) = Ri[(n2)e™%2  (12)
Z— o
Furthermore, when there is any loss in the system, the
eigenvalue solution for the wavenumbers k,S:!’ shows
that Im k,S{"’ < 0, which leads to radial damping of
the scattered modes.
The total field v’ in region (1), i.e., where p > a
and 0 < z < hy, is thus given by p¥' =y, + vy, .
We now construct an expression for the field '? in
region (2), i.e., where p < aand 0 < z < h,. Without
difficulty, we find that

Z e—urplz ¢

p=—00

X Z(An m)p ,,(k(,S(z)p)Gif)(z), (13)

where the Bessel function J,, is chosen to be finite at
p = 0and (4, ,),Js a coefficient which describes the
modes of order n transmitted into region (2) for an
incident mode of order m from region (1). We note
that the height-gain function G!?(z), for region (2),
must be employed if 9‘® is to satisfy the appropriate
boundary conditions.

A
,‘p(2) G(l)(z )
By

4. FIELD MATCHING
In order to obtain relationships between the un-
known coeflicients, we impose continuity conditions
at the cylindrical interface between regions (1) and
(2). Specifically, we require that ¢ and dy/dp be
continuous at p = a, for 0 < z < hy, where b, < k.

? G. N. Watson, Theory of Bessel Functions, 2nd ed. (Cambridge
University Press, Cambridge, England, 1944).
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Then, on using (10), (11), and (13), we find that
J(keSH0)G)(2) + 3 B, H(keSPa)G(2)
=23 A, J(keSTa)GP(2) (14)

and
SOOI (keSPa)GW(2) + I B, .SV H (koS a)GM(z)

=3 A, SPT(k,SPa)G?P(2), (15)

where the primes indicate differentiation with respect
to the argument of the Bessel function. In writing (14)
and (15) the subscript p has been dropped, since term-
wise matching of the p series is permitted.

We are now faced with the question of what bound-
ary condition to impose on the vertical face p = a
when A, > z > hy. For the moment, we assume that
both »¥' and OyV/dp are zero over this surface.
An equivalent statement is to say that (14) and (15)
apply over the interval 0 < z < o but GM(z) =0
for z > h, and G'¥(z) = 0 for z > h,. A method to
estimate the error of this assumption and a first-order
correction has been discussed elsewhere® in connection
with electromagnetic waves in the earth-ionosphere
waveguide.

5. REDUCTION OF THE SOLUTION

To reduce (14) and (15), for the idealizations
indicated, we multiply both sides by G{*'(z) and inte-
grate from O to A,. Thus, we obtain

J(keSP)y y + 3 B, uH(koSP ),

= Ay J(koSP ), , (16)
and

SOJ (koSPa), o + 3 By wSPH (koSMa)l,,

= Ay mSET (keSPa), ., (17)

SET (koS Pa) (keSwa) — ST (koS L) (koS Pa)
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where
r,, =2 - ["62@)1r 18
q,a_2A((12) - R [ [-4 (Z)] z, ( )
a h
£y = f '69(:)6P(2) dz, (19)
and °
A h
f, = f ‘GG (2) dz. (20)
0

In getting from (14) and (15) to (16) and (17), we
exploit the orthogonality property

h.
f OGP (@) dz =0 for n%q.  (21)
0

On eliminating 4, . from (16) and (17), we obtain the
single infinite system

ISP (koS a)J (koS a)
— SOJ(koeSPa)I (koSP DT,
+ 3 B, [S® T (kS a)H(koSMa)

— SPH (keSMa)J (keSPa)ll,, = 0. (22)

In principle, we may solve for the coefficients B, ,, for
each p by inverting an infinite square matrix. In
practice, we truncate the system. In effect, this means
that we replace the summation over s by a finite
number of terms, say N. Then, by letting ¢ =1, 2,
3, -+, N, we have a sufficient number of equations
to solve for B, ,,. The convergence of solutions of this
type as N becomes large has been discussed pre-
viously.*2® For the present situation, we focus our
attention on the situation where s, — hy < A, . In this
instance, we can expect that

Iszl) _ S¢(12)| < 1.

Furthermore, in such cases, it is found that lﬁ,,ml K
|T, .| when g 5 m. Thus, in order to get a zero-order
solution for a typical coefficient B, ,, in (22), we retain
only the terms for s = g and s = m. First of all, when
q = m, we easily get

Bm,m =~ Bgn,m = _[

while, if g % m, we must deal with more terms in (22).
In most cases it appears that

Bym~B,,=—B . P

am m,m = >

9

where P is of the order of 1. The zero-order solutions
given by (23) and (24) should be applicable for the

8 J. R. Wait, Can. J. Phys. 46, 1979 (1968).

S (koS a)H(koS5'a) — S%)H’(kosiya)-](kosi:)a)

], 23)

dominant modes such that S’ and S are not
significantly different from unity.
The final result for the scattered field is given by
(11) with the coefficient (B, ,), given approximately
? E. Bahar and J. R. Wait, Quasi Optics, J. Fox, Ed. (Polytechnic
‘I‘tztilgt: of Brooklyn Press, Brooklyn, New York, 1964), pp.

12 A. Wexler, IEEE Trans. Microwave Theory Tech. 15, 508
(1967).
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by (23) and (24) above, where we set ¢ =5 and
remember that the Bessel functions are of order p.
Of course, if the accuracy is insufficient we should
return to (22) and retain additional terms.

6. A SIMPLIFICATION

To provide insight into the behavior of the solution,
we now consider a simplification which is valid when
the perturbation is small. First of all, we note that,
in the zeroth approximation, the scattered field is
expressible in the form

+o0
Yo const X > > e ¥BY ), H (kS p)etr?,
¢ p=—00

(25)
which amounts to changing the order of the summa-
tions indicated in (11). First of all, we focus our
attention on the terms where g = m. These are the
contribution to the scattered field in mode m for an
incident mode also of order m. Thus, according to
(24), we have
ulyw) o)
)  Jy0) [J(0) (
wljw)  oH0) |H,0)
J,(w)  Hy(v)
where u = k,S%a and v = k,S¥a. We now set
A = u — v and expand (26) in a series in powers of
A. To within a first order of smallness in A, we find
that

(Bonm)p =2 [(7D)2iJ0[J5(0) — Jp1a(0)] (@) (27)

In arriving at (27), we have used the following well-
known identities for Bessel functions of argument »:

Bpm)p = — 26)

J,H, — JH, = =2i[(7v),
Jp=—@o), + Jpy = (BI), — s

Another simplification in (25) is to replace the
Hankel function of argument k,S{*'p by the first term
of its asymptotic expansion [e.g., see (12) above].
This is justified at sufficiently large distances from the
scatterer. In other words, we require that both kya 3> 1
and p > a. Then, on using (27), we find from (25)
that the scattered mth mode field is

2 —ikoSy'Vp TVA
~ e m P I
'/’sc]m (ﬂkos(ﬂl‘)p) 2i
-+ .
X X V) — S pa(0)]e?%, (28)
P=—0a0

omitting the constant term (A{'/h )G (z,). In order
to sum these series, we make use of the following

JAMES R. WAIT

identities:
. @ & i
J2 (21_; sin 5) = — z Jw_l(U)J’H_l(U)e_’Pd’ (29)
P=—00
and
) By i
Jo (20 sin E) = 3 Jiv)e ', (30)
Pp=—0c0

which follow immediately from formulas given by
Erdelyi et al.'* Then, on using the well-known identity

Jo(Z) = (Z/Z)Jl(z) — Jo(2),

we see that (28) is expressible in the closed form

3
™ ) ein/A e—-ikosm‘”p A

sin ($/2)
x J, (2k0si,1’a sin %’) (31)

Vsolm = (
’ 2k, SPp

where A = ka(S» — SO),
We see that the scattered field has a strong maximum
in the forward direction. In fact, as ¢ — 0,

J1(2koSYa sin $/2)
sin ¢/2

- kos,(”t)a.

Thus, the forward scattered field is proportional to
a® (ie., the area of the perturbation) and the con-
trast between the wavenumbers

koS® and k,S%.

The development of the coefficients (BJ,) for
g # n into a series development in A follows in a
similar fashion to that outlined above. If we restrict
attention to modes of order g such that both

lkoa(Siw — S K1 and [kea(SY — ST « 1,
then (24) reduces to
(Bo,m)p ~ (B, m)P-

Thus, for the approximation indicated, it follows that
the cross-coupled scattered field in mode ¢ for an
incident mode of order m is given by

(32)

Vel ~ YeclmPs (33)
where P is roughly proportional to
ha
f f G(2)GP(2) dz
Sem = F"'"' . (34

a9 fh’[G‘(zz)(z)]z dz
[

11 A. Erdelyi, Ed., Higher Transcendental Functions, Vol. 2
(McGraw-Hill Book Co., Inc., New York, 1953), p. 101.
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7. MODE COUPLING

The coupling parameter given by (34) may be
expressed in closed form. We proceed by using a
variant of the standard analysis for demonstrating
orthogonality of modes in a closed system.!?

In region (1), for a mode of order m, we have

*Gy)

o F@ = (oSy)6, =0, (3%2)
while in region (2), for a mode of order n,
32G(2’ 2 (20329+(2)
2 T [K(2) — (koS4 )1G," = 0. (35b)

Multiplying (35a) by G'? and (35b) by G’ and sub-
tracting the resulting equations, we find that

o[ 3Gy w BG‘Z’]
G, — G
az[ az 0z

= [(keS) — (KeSDVIGGP. (36)

Both sides of (36) are now integrated over the interval
from O to h,. Thus, we find that

A (C]
fo,. = j 60(2)G2(2) dz
0

_ [GR (hy) + KPGR ()]G (hy)
(koS))* — (koSP)?
where G (h,) = 0G'V[9z evaluated at z = h,. Also,

in obtaining (37), we have used the boundary con-
dition

» @37

[aim (38)

+ K(2)G(2):| = 0.
0z

z=hs
In a similar manner, we find that, for n % m,
hy
T,.,= f G2 (2)G¥(2) dz = 0,
0
which is a demonstration of the orthogonality property

already used. For the case m = n, we consider the
height-gain function G®(z), in region (2), which

12 A. N. Sommerfeld, Partial Differential Equations (Academic
Press Inc., New York, 1960), pp. 81-91.
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satisfies
azc 2
a 2
Combining (35b) and (39), we obtain

a [G(2) a G(2) G(2) _@_ G(2)]

+ [K(2) — (kSY'1G® = 0. (39)

0z 0z 0z
= [(keST) — (koS))IGP G2,

‘We again integrate both sides with respect to z over

the range 0 to h, and assume that both G'* and G*¥
satisfy the impedance boundary conditions at z = A,
but only G!¥ satisfies the impedance boundary
condition G® = K,G at z = 0. Thus, we find that

f " 6®(2)6%(z) dz
__ GO 2 e @

KIS — (S‘”)z][ 7@~ KiG (Z)]

(40)

We now require that G'?(z) satisfy the same impedance
boundary condition as G\?(z) at z = 0. Thus, S —
(S). Then, on applying Cauchy’s theorem to the
right-hand side of (40), we get

hy
r,,= f [GOGF dz

G(2)(0) {
2k§S‘2’ oS

z=0

[6(z) — KOG(zn}S . (@)

-5,
z=0
An explicit evaluation of this normalizing factor re-
quires that we are able to solve (39) subject to the
boundary condition at z = h,. For example, if k%(z)
is a linear function of z, the solutions of (39) are Airy
functions, and a relatively simple closed form for
T, . is available.> The important point is that ', , is
of the order of A, for the propagating modes of low
attenuation. On the other hand, f‘,,,m (for n % m) is
much less than s, when A, — hy < hy. Thus, we are
justified in our exploiting the condition |fn,m/ [, .l <
1 in considering first-order perturbation effects.
More work on this subject is obviously needed if we
are to obtain useful information about acoustic-wave
propagation (with or without gravity) in the non-
uniform atmospheric ducts.
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In a nonlinear field an accelerated wave sooner or later turns into a shock. When this is not the case,
the wave is exceptional (e.g., Alfvén waves of magnetohydrodynamics). Then the normal speed of the
wave remains undisturbed. This criterion is given a convenient covariant form in terms of the ray velocity.
As an example a thermodynamical relativistic fiuid is studied.

1. INTRODUCTION

The field is represented by a column vector v(x®)
of N components, functions of the coordinates x*
(x=0,1,2,:--,n); x* = tis a time coordinate and
x*(i=1,2,---,n)are space coordinates. We assume
that the field satisfies a set of N partial differential
equations. By differentiating (if necessary) some of
these equations with respect to ¢z, we obtain a system
of quasilinear differential equations which through the
introduction of new dependent variables'~2 can always
be reduced to the form

A%(u, xPyu, = f(u, x#).

M

(The subscript o denotes partial differentiation with
respect to x%.)

We assume that across some characteristic (wave)
surface,

p(x%) = 0, #))
the first-order derivatives of the field u have a finite
jump for which we use the following notations:

l:aa—;:l =7t = ou,

while the field itself is continuous
[u] = 0.

Now it is well known that (2) must be a solution of
the characteristic equation

3

|Aa%| =0, Pu = aa(p9
or
lAn—ﬂ'I, =0’ An=Ainis

if we assume A° = I and if we put

'z n = V‘P
Vel |Vl

1 R. Courant and D. Hilbert, Methods of Mathematical Physics [
(Interscience Publishers, Inc., New York, 1962).

2 A. Jeffrey and T. Taniuti, Non-Linear Wave Propagation
(Academic Press Inc., New York, 1964).

3 G. Boillat, “Définition et propagation des ondes™ (to be pub-
lished).

4)

We suppose that the system (1) is hyperbolic; i.e.,
that the matrix
A

- A ’)

n

has a full set of linearly independent eigenvectors.

It is also well known that the discontinuities—or
(weak) disturbances—(3) propagate along rays. Their
laws of propagation can be given a very simple form
when the waves invade a constant state and the matri-
ces A* do not depend explicitly on the xf.¢ When a
wave is accelerated the disturbances grow until they
cease to be finite, thus tending to a shock. (Nonhyper-
bolic fields show a different behavior.®)

However, waves might exist for which this phenom-
enon does not arise. This remarkable fact, first noted
by Lax,® requires that the gradient of the normal
velocity A with respect to the field components be
orthogonal to all the corresponding right eigenvectors
of (5); this is equivalent to

A(u,n) = Vi.du=0. 6)

A wave whose normal speed is not disturbed
(according to this equation) is called, after Lax, an
exceptional wave. If all the waves of a given field are
exceptional, the field is said to be completely excep-
tional. For instance, Alfvén waves of magnetohydro-
dynamics are exceptional 246

2. RAY VELOCITY

If the field equations are covariant the character-
istic equations also have a covariant form. Thus,

p=0, p=p G P, 0, Pu,»
a13“29"'sa9=0’1’.”9n’

M

where G(u) is a completely symmetric tensor which
is not a product of tensors of lower orders.

¢ G. Boillat, La propagation des ondes (Gauthier-Villars, Paris,
1965).

5 P. D. Lax, Ann. Math. Studies 33, 211 (1954); Commun. Pure
Appl. Math. 10, 537 (1957).

8 K. O. Friedrichs and H. Kranzer, Courant Institute of Mathe-
matical Sciences, New York University, Report NYO-6486, 1958.
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The ray velocity has the components

Oy[dg,. ®)

It is the speed of propagation of the disturbances and
therefore it must not be, in general relativity, a
spacelike vector, i.e., we must have

J\I’2=g"ﬁ@@

>0; ®
09, 0y

8,p is the metric tensor of signature —2.
If N # 0, we can normalize (8); thus,

190
W= , u®=1. 10
N 0p,
From (7) we have
u*p, = 0.

Of special interest are the cases p =1 and p = 2.
When p = 1, Eq. (7) is simply

u*ep, =0,

and the #* are field variables. The nonrelativistic
equivalent is
A=u-n

This kind of wave appears in fluid moving with veloc-
ity u.
When p = 2, then

v = 16" .9,
We assume that G is a normal tensor?: its eigenvalues
S are real, different from zero; one eigenvector
(corresponding to #,) is timelike and the three others
are spacelike. In the eigenframe

G* = diag (50, —Sa)» — 521> —5(a)s
g = diag (1, —1, —1, —1),

so that y = 0 becomes
P = %i') ne.
=T
As 2% < 1is to be satisfied for any direction n, we must
have
0<sylsy <1, i=1,2,3. (1

(The restriction s, # 0 allows one to express the
@, in terms of the #f.) Then the condition (9) is
automatically satisfied.

We note that, if one equality holds in (11), light
velocity is reached in one direction:

Sqy =8~ A2=1, n=(%l,0,0).

7 A. Lichnerowicz, Théories relativistes de la gravitation et de
Pélectromagnétisme (Masson, Paris, 1955).

3. EXCEPTIONAL WAVES
Inserting (4) into (7) we have

a 1 v e
lV‘PI a_’l/i Vi= VQ/J == @ Puy " (P%VGGIM %
p

0

Multiplying by du and taking account of (6), we see
that the waves (7) are exceptional provided? that
Sy =0, 0y =p 0ups " 9,067 (12)

when (7) is satisfied.
From (10) we get

U = 2 05 — wy 5% V).
Hence,
Su* = N7Y0F — U up)PuyPay * * * Pa, 0GP ",
and the condition (12) can also be written
@ 0u* = 0.

(The metric tensor g, only admits discontinuities of the
second order across a null surface.?)

By applying the criterion (12) to nonlinear electro-
dynamics we selected an exceptional Lagrangian
which generalizes the Born-Infeld Lagrangian and
gives birth to a completely exceptional system of field
equations.®

4. THERMODYNAMICAL FLUID

The field equations of a perfect thermodynamical
fluid derived from a nonsymmetric energy tensor can
be written'?

ua(raaf - aap) - Vaqa =Y

(fu* — W — y*8,p = 0,
yf =g — uuf, uu®=1.
The metric tensor is given; r, f, p, and u*, are
respectively the density, index, pressure, and velocity

of the fluid. The heat-current vector is assumed to be
a given function of the field variables

q* = qa(uﬂ’ p, ¢: ¢y)’ ¢y = ay¢'
Furthermore it is supposed that

r=rp,$), f=f(p. ),

where ¢ is some thermodynamical quantity (e.g., the
temperature) which can be discontinuous in the second

8 G. Boillat, Compt. Rend. 262A, 1285 (1966).

® G. Boillat, ““Non-Linear Electrodynamics; Lagrangians and
Equations of Motion” (to be published).

10 Y. Bruhat, Commun. Math. Phys. 3, 334 (1966).
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order (8¢ = 0). Since our purpose is merely to illus-
trate the preceding sections we do not go on to discuss
these hypotheses.

The wave surfaces have already been determined in
a study of the Cauchy problem,® but as we also need
the disturbances we make the calculations. Making
the replacement

V. — 9,6

in the field equations, we obtain
u*@r'dp + redu* =0, (13)
u'g(rf’ — 1)ép — ¢.8q° =0, (14
(rfu® — ¢ 00" — y*?,0p = 0, (15)

where the prime denotes partial differentiation with
respect to p. The solutions are as follows:

(@) (rfu* — q*) @, = 0, together with

@, 0u* = ¢,0q" = 6p = 0. (16)
Equation (9) yields
(f — g 2 —¥*q.45, 7

an inequality already given.’® But we shall find
stronger conditions.

It appears at once, by virtue of (16), that this wave
is exceptional:

@ I(rfu* — ¢°) = 0.
(b) Multiplying (15) by ¢, and taking account of
(13) we get
G*,pp =0, dp #0,
G = g + u™® + uPr",
v* = }(r'f — Du* — 3r'r g~
Let ¥, be an eigenvector corresponding to the
eigenvalue s
(G* — sg®h)yV, = 0. (18)
To the eigenvalue s = 1 correspond two eigenvectors
satisfying
'V, = vV, = 0.
These eigenvectors are necessarily spacelike for they
are orthogonal to the timelike vector #* Thus we can
put
So) = S = 1.
Now we look for a and b such that
V, = au, + bv,.
Inserting this expression into (18) results in
a(l — s + u®) + bv* =0,
a+ bl —s+u®) =0,
whence we get
A=s+up) —v1*=0

GUY BOILLAT

and the necessary condition

v " > 0,
ie.,
[rf — qau* — (r[r)I > —y*q.4,. (19)
Then,
s=1+4us1 £+ w),
w? =00 (ugt’)?, 0<w<1,
and

V,V* = £2b%u:w(l £ w).
V,V* > 0 corresponds to the upper sign,and V,V* < 0
to the lower one. Therefore,
Sy =14+ u(1+w), sq=1+u"1—w)
and according to (11) we must have

u, 0 > 0,
that is,
(' [f — qu) > 1. (20)
It is easy to see that (19) and (20) are more restric-
tive than (17) by noting that

(f — qu*)* > [1rf — gu* — (r/r)F
if (20) is true.
It can be checked that these waves are not excep-
tional.

(c) The remaining solution is

u*=0p=0, ¢bq°=0.

Since
Oy = @pd’,
these equations give
09"
o PaPp =0
Ocby
or
@ B
a’ @05 =0, a* = 1(81 + % )
2 a¢ﬂ a¢a
The wave is exceptional if
i ~0
F) ¢y (Pa(pﬂ(py .

It is the case if the heat current is a linear function of
the gradient of ¢ and, more generally, if there exists
a vector g%, which is a function of the field variables,

such that
af
S (aa — a’a“”) = 0.
aB,y a(ﬁy
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The purpose of this paper is to achieve a clearer understanding of the problems involved in the deter-
mination of a closed formula for fractional parentage coefficients (fpc). The connection between the fpc
and one-block Wigner coefficients of a unitary group of dimension equal to that of the number of states
is explicitly derived. Furthermore, these Wigner coefficients are decomposed into ones characterized by a
canonical chain of subgroups (for which an explicit formula is given) and transformation brackets from
the canonical to the physical chain. It is in the explicit and systematic determination of the states in the
latter chain where the main difficulty appears. We fully analyze the case of the p shell to show that a
complete nonorthonormal set of states in the physical chain “U(3) > R(3) can be derived easily using
Littlewood’s procedure for the reduction of irreducible representations (IR) of SU(3) with respect to the
subgroup R(3). This procedure gives a deeper understanding of the free exponent appearing in the
polynomials in the creation operators defining the states in the Us(3) > R(3) chain. As Littlewood’s
procedure applies to the <W(r) = R(r) chain, and probably can be generalized to other noncanonical
chains of groups, it opens the possibility of obtaining general closed formulas for the fpc in a nonortho-

MARCH 1969

normal basis.

1. INTRODUCTION

The importance of the role that fractional parentage
coefficients (fpc) play in problems of atomic and
molecular structure has been appreciated for a long
time. In particular, Racah,! Jahn,? and Flowers® have
stressed their usefulness and have given tables
obtained by systematic application of projection
techniques.

Yet we do not have for the fpc the type of closed
formula we are familiar with in the case of Wigner or
Racah coeflicients of the rotation group. The purpose
of this article is to try to understand fully the reasons
that have prevented the derivation of these closed
formulas in the past, and to indicate the recent develop-
ments that could make possible a systematic derivation
of such formulas in the future.

For the sake of clearness, we shall restrict ourselves
in this article to the discussion of fpc in the con-
figuration space of a single orbital, and in some
aspects of the analysis, we shall further limit this
orbital to the angular momentum / = 1, i.e., the p
shell. Yet the approach will be such that everything
we say can be extended, (and in some cases will
already be applicable) to problems of several orbitals,
to states in spin—isospin space, to spin-orbital states
(i.e., j—f coupling) and even to some aspects of the

* Asesor Director de la Comision Nacional de Energia Nuclear
(México).

1 G. Racah, Phys. Rev. 76, 1352 (1949).

2H. A. Jahn, Proc. Roy. Soc. (London) A201, 516 (1950);
A205, 192 (1951), and following articles of the series.

3 B. H. Flowers, Proc. Roy. Soc. (London) A212, 248 (1952);
A. R. Edmonds and B. H. Flowers, Proc. Roy. Soc. (London) A214,
515 (1952); A215, 120 (1952).

fpc for n-particle harmonic-oscillator states developed
recently.

While the reader is undoubtedly familiar with the
concept of fpc, we would like to review it briefly so as
to formulate it in a way useful to the type of approach
we shall outline in this article.

In a fixed orbital, the single-particle states are
characterized by the projection m of the orbital
angular momentum, as the total quantum number
v and the angular momentum / are fixed. Thus these
single particle states could be denoted by

1/)vlm(rs) = 'l’m(f’), (ll)
where s = 1,---,n is the index characterizing the
particle.

If we have a system of n particles in the v/ orbital,
we could form an n-particle state characterized by the
total angular momentum L and projection M, i.e.,
irreducible representations (IR) of the chain of
rotation groups R(3) = R(2), as well as by a partition
F=Ufifar oS, A2 2/,>0 of n and a
Yamanouchi symbol r = (lry, -+, r,,r,), i€, an
IR of the chain of symmetric groups S(n) >
S(n—1)>-+-> 8(). An example of f and r is
given below:

1] 3]
2 f=[2111],

4 r = (12134). (1.2)

m=1---, I,

4 P. Kramer and M. Moshinsky, Nuclear Physics 82, 241 (1966);
also in Group Theory and Applications, E. M. Loebl, Ed. (Academic
Press Inc., New York, 1968).
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The n-particle states are then represented by the
kets

[I"frQLM) = 3 AphT o™ Pm, (1) = -+ 90, ("), (1.3)
mq

where we indicate by Q the additional quantum
numbers that complete the characterization of the
states. The 4’s in (1.3) are the coefficients in a develop-
ment of our ket in terms of the single-particle states
(1.1). The numbers f, r, L, M would, of course,
remain unchanged if we apply to (1.3) any operator
invariant under the groups R(3) and S(n).

The fpc is then the coefficient required for the
expansion of the state (1.3) in terms of a similar state
of n — 1 particles and the single state of particle n,
coupled to a total orbital angular momentum L and
projection M (denoted by the bracket notation
[ 120, ie., it is the last term in the following ex-
pansion:

I"frQLM) = 3 {[II"frOLyp(™)] 0
Qr
x (I"YQL, 1} I'fQLY). (1.4)

The partition £ is obtained from f by suppressing the
block containing » in the Young tableau, and the
Yamanouchi symbols 7, r are related in the same way.

The usefulness of the development (1.4) lies in the
fact that the matrix elements of a symmetric, one-
body, irreducible tensor operator

Zl T (%, P) (1.5)
with respect to states (1.3) that are bases for the IR
of S(n) is the same as the matrix elements of the
operator’—3

nqu(r", P")’ (16)

which could be evaluated immediately using the
expansion (1.4). The extension of this type of analysis
to two-body operators by using double expansions of
the type (1.4), i.e., two-body fpc is of course very
familiar.}-3

It is known'~3 that the fpc in (1.4) are connected
with particular Wigner coefficients of U2/ + 1).
We proceed to give a systematic derivation of this
connection by a procedure developed recently® for the
group-theoretical characterization of an alternative

5 (a) M. Moshinsky, J. Math. Phys. 7, 691 (1966). (b) The discus-
sion in this section is based on the paper cited in (a). To have a
more systematic notation, the creation operators a‘*;, and annihilation
operators a® in that paper will here be replaced by a;, and a,.
respectively, and the notation for the generators of the unmitary
groups will be changed accordingly.
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description of the states (1.3). We later discuss the
systematic evaluation of these Wigner coefficients.

2. THE fpc AS WIGNER COEFFICIENTS OF
A UNITARY GROUPsP

We shall introduce the creation operators a2, with
two indices m=/[---, =, s=1,--,n, and
establish the following correlation between them and
the single-particle states (1.1):

Pu(r’) > a5, |0). 1)

In (2.1), |0) stands for the vacuum state characterized
by the property that

a,, 100 =0 forany m,s, 2.2)

with a3 being the annihilation operator associated
with a?,, so it satisfies with the latter the commutation
relations

[df,’,/ » ain] = 6*° m'm>

(2.3)

Em'm = (_l)ma—mm’ . (24)

The appearance of the metric tensor g,,.,, is due to
the fact that, from the correlation (2.1), a%,, m =
l,---, —I transforms under rotations as a basis for
an IR / of R(3), i.e., in the same way as Y,,,(0, ¢).
The annihilation operator @¢,, which is the transposed

conjugate of af,, will transform then as

(_ l)m Yl—m(es ‘p)’

hence the appearance of g, rather than Kronecker
delta.

From the correlation (2.1) an alternative expression
for the n-particle state (1.3) will be given by

[I"frQLM) = P,(frQLM)|0) (2.5a)
where P, is the homogeneous polynomial
P(frOLM) =3 Anh7 s ay, * " an. . (2.5b)

m;

We note now that the operators ai, m=
L»++,=l; s=1,+++,n can be thought of as the
components of a vector of [(2/ + I)n] dimensions.
The vector {a%} could then be characterized by the
IR [1] of a unitary group U{[(2/ + Dn] acting in a
space of the same number of dimensions. The poly-
nomijals (2.5b), being of degree n in the components
of the vector {a:}, are characterized by the IR [n],
i.e., the completely symmetric one of the same group.

We proceed now to show that the states (2.5) are
further characterized by the IR of the following chain
of subgroups associated with the (2/ 4 1)-dimensional
space of the indices m and the n-dimensional space of
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the indices s:
U2l + Dn] © U2l + 1) X U(n), (2.6a)
W2+ 1) > - - - 2 DYRA))
(1 )
o> D , (2.6b)
0 1
Un—2) 0 0
Un—1) 0
Un) > [ :| > 0 10
0 1
0 01
40 N
1
1
S5+ D ; (2.60)
— 1 pu—

where D? are the (2/ 4+ 1) x (2/ + 1) unitary matrices
associated with the IR / of R(3).

The IR of a unitary group of j dimensions U(j) are
characterized by a partition [f;;- - - f;;] and those of
R(3) and R(2), as before, by the angular momentum
L and its projection M. A polynomial associated with
the IR of the chains (2.6b), (2.6¢c) could then be
characterized

fhy--- h21+1] JSinSon

QLM
r ;

fnu

f;l. 01 ) : .. :fn—l n—1 , (2. 7)

Ju

where [h, - -+ hy, 4] is the partition characterizing the
IR of U:(2/ + 1) and Q stands for the extra quantum
numbers necessary to characterize the states in the
chain (2.6b), which could include numbers associated
with the IR of subgroups between U.(2/ + 1) and
DYR(3)).

If the polynomial (2.7) belongs to the IR [n] of
U[(2! + 1n], then the partitions

[hl ot h2l+1]’ [fl'n o 'f'rm]
must be identical'® partitions of #, i.e.,
hl =f17n h2 =.f2fn"” ’ (2.83)
fln +.f2n+“.+fnn=n9 (2'8b)

which implies incidentally that the number of terms
different from zero is < min (2/ + 1, n). Furthermore,
if we want to correlate the polynomials (2.5b) and

¢ T. A. Brody, M. Moshinsky, and 1. Renero, J. Math. Phys. 6,
1540 (1965).
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(2.7), we first note that the former are of degree one in
each value s = 1, - - - , n of the upper index. As was
shown in Ref. 5, this implies that the partition in
(2.7) must be restricted by the conditions

S+ +fi)— (frmt o+ ha)=1
for j=1,-++,n (29)

When taking into account the restrictions (2.8)
and (2.9) on the partitions, one realizes that they
could be replaced by the set of numbers (1ry- - - r,),
where r; indicates in which position on the jth row
we must add a unit to get the partition [f; - f;]
from [f; ;1" fi14] As an example, for n = 4,
S = [31], we indicate the set of partitions [f;;], 1 <
i <j <4, and the corresponding Yamanouchi sym-
bols:

3100 3100
210 210
b0 any; | O (1211);
1 1
3100
300
20 (1112). (2.10)
1

A special class of polynomials in the components of
{a:,} characterized by IR of the chains of groups
(2.6), i.e., those whose partitions are restricted by
(2.8), (2.9), are then homogeneous polynomials of
degree n characterized by the same quantum numbers
as (2.5b). In Ref. 5 we actually show that these
polynomials are identicalif f;, = f;,i=1,-,n,s0
in our further discussion of the polynomials (2.5b),
we shall use for them the notation (2.7) with restric-
tions (2.8) and (2.9).

To determine now the fpc, let us consider a poly-
nomial (2.7) in which the index s is restricted to
s=1,---,n—1,1e.,

[h1 e i’zz+1] fl,n—1f2,n—1 i 'fn—l,n—l

QLM fl,n_z e ‘fn—z,n—z

2.11)

Ju

To represent a polynomial of n — 1 particles of the
type (2.5b), we must have again

h=fina, ho=fona,' ;5  (2122)
Sima+ -+ foapa=n—1 (2.12b)

and the restrictions (2.9). We could then couple the
P of (2.11) and 4}, to a given IR [k, - - - hy,,] of
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U(2/ + 1), and angular momentum L and projection
M, by means of the Wigner coefficients of W.(2/ + 1)
in the chain (2.6b), i.e.,

[hl e h,zz+1] f1,n—1 fz,n—l o, n—1,n—1
QLyM

f;l,n—z t .fn—2,'n—2 ”
a

Ju

et h21+1]; (1) fhy -+ h2H—1]\

QLM Im QLM (2.13)

9 <[h1

The resulting polynomial will be homogeneous and
of degree n and so correspond to the IR [n] of
U[(2! + Dn]. Furthermore, by definition it will be
characterized by the IR [h; - * - by 4] of W2 + 1)
and so from (2.8a) by the IR [, * - - f,.,] of U(n). As
a® is invariant under the subgroup U(n — 1) of
U(n), it is clear that (2.13) leads to the polynomial
(2.7). Comparing this with (1.4), and using the ortho-
normality property of the Wigner coefficients of
R(3) and the orthogonality of bases of IR of groups,’
we conclude that if

hl.:fl’ h2=f2"”;
hl =f‘jls hz =f2""s (2-14)

then

QL 1|} QLY
_ - VAt SRR H NI ARE
= 2 fm Vg B Y )

(2.15)

with the £ and f related as in Sec. 1.
The problem of the fpc reduces then to the one of
determining the Wigner coefficients of U(2/ 4 1) in

SinSor S 10

fl,k—l e fk—1,k—1

<[fn], D] , [fu]> = Su ;

10 P 1]
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(2.15). This can be accomplished in two steps. First
we consider for the W.(2/ + 1) group the chain of
subgroups

W@l 0
W2l + 1) [ ]
0o 1
(1)
1

(2.16)

1

This would give us kets, now called Gel'fand states,?
characterized by the partitions

Ju S Jix

.fl.k——l o 'fk—l,k—l

, k=241 (217

Ju
We could then determine the transformation brackets

between the states in the chain (2.6b) and those in the
chain (2.17), i.e.,

JueSow " S

fl.k—-l °t 'fk—l,k—-l

[fie - Sl
QLM

(2.18)

Ju
Once these are available, we can use them to reduce
the Wigner coefficients in (2.13) to the corresponding

ones of WU(k), k =2/ + 1 in the canonical chain,
ie.,

0 fikf 2k
f 1,k~1

fkk

T fk—l,k—l

Ju , (2.19)

7 E. P. Wigner, Group Theory (Academic Press Inc., New York, 1959), p. 115.
81, M. Gel'fand and M. L. Zetlin, Dokl. Akad. Nauk SSSR 71, 825 (1950).
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where we have

10 ---0 , (2.20a)

-1

(2.20b)

where there are k — u rows “1 0 - -+ 0” and x rows
“0---0,and

p=Il—m+1

k
Jis =t 00,2 05 (2.21)
i'=n
In the next section we proceed to give a closed
general expression for (2.19), while in Sec. 4 we discuss
the transformation brackets (2.18).

3. ONE-BLOCK WIGNER COEFFICIENTS IN
THE CANONICAL CHAIN
As the most general unitary matrix could be
written as
U=¢e’U’, detU' =1, CRY)

where U’ is unitary unimodular, the Wigner co-
efficient (2.19) of U(k) is identical to the correspond-
ing one® of SU:(k)

Jh

£r 1 ’
<[f,-,-1, [ ] ’ [fi,-]>, (3.22)
"
where
]z{j = Jij _]kk’ lea = f;':i "fkk- (3.2b)
Six fk,——lcl,kflék f{k o 'f'lé—l,k 0
f{.k-—l e 'fl::—l,k—l a* Sl 'f‘kl—l.k—l
[ .o
fil f“l’l
fix
f{k o
X Sip—a-
with
) k
filf =fi,j + 5iz, Z 6:‘1'- 3.7
P=p

Actually we could have taken for the IR of the
U(k + 1) group any partition [f],.,] satisfying the

' 'fllc—l,k—l
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As f, = 0, the state associated with the partitions

[/;;] will be a polynomial function only of the vectors

at,s=1,--+,k—1, acting on |0), so the inde-
1

pendent state ['u] could be characterized by the

vector a¥, acting on |0). It is convenient to denote the
components of the vector by the index u defined in
(2.20b) that takes the more natural sequence of
values y=1,2,---,k, in which case we could

write
lm>sa;:|o>, p=1,k

From (3.3) the Wigner coefficient (3.2), or equiv-
alently (2.19), reduces to the matrix element

Suefon - Six fik "']llc—l,k 0

fll,k——l . 'f;lc—l,k—l a f{,k—l v 'flz—l,k—l
“ ..

(3.3)

fu fu

(3.4)

To evaluate the latter, let us consider the generators
C,,- of U(k + 1) in a Cartesian metric, i.e.,

S =8 =8’ ] 38’
Gmt’ - 2 Guly s 1y s aﬂ] =9 6##’ 4
8

mu =1, kk+1. (3.5

Clearly C,;.y, g =1,2,---,k has the same trans-
formation properties as a;, u = 1,2, -,k under
the group W (k), so the Wigner—Eckart theorem leads
to

={flx"" flé—lkfizk” a* ”f{k o 'fkl—l.k 0)

S O S fi O
) f]::—l,kfllck Fix e fk’—l.k 0
Gu,k+1 ]i,k—1 v .]I:—l.k—l (3.6)

fu

branching rule

Jrsm S on S

and a similar one for f,. In that case the reduced
matrix element would depend also on f/,,, in such
a way as to cancel the dependence on f/, , in the
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matrix element of C,,,,. We prefer to take the
simplest partition satisfying the branching rule, i.e.,
Jiwrr =Si> Sfesrpn =0, as the reduced matrix
clement in (3.6) has been calculated by Brody,
Moshinsky, and Renero.®

The matrix elements of C, , ., were given in a funda-

<[f:,-1, m

=pt

=1

H(fm. "'f-i.z—l +j - l;. + 1) k—
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mental work by Gel’fand and Zetlin,® while the reduced
matrix element of a g}, was given in Ref. 9. Combining
these results and simplifying some terms, as indicated
explicitly in the Appendix, and making use of the rela-
tions (3.2b), we obtain finally for the one-block Wigner

coefficient in the canonical chain the expression

Uil ) =TI SUss = WI(is = frpriaa + la = Dip = fopip + oo = L+ nrt

x i

k
A=y

i*1y

An alternative approach to the evaluation of the
one-block Wigner coefficients, also using the matrix
elements of the generator C,,,,, was discussed
previously by Baird and Biedenharn.®

4, THE TRANSFORMATION BRACKETS FROM

THE CANONICAL TO THE PHYSICAL CHAIN

Having obtained in the previous section the one-
block Wigner coefficient in the canonical chain, the
remaining problem for the determination of the fpc
is the evaluation of the transformation bracket (2.18)
between the states in the physical and the canonical
chains. A purely computational procedure for
evaluating these brackets is easily available. We note
that the operator of angular momentum £, 7 =1, 0,
—1,is given in terms of

Cn' =2 (=D™anal .

byll
£, =[0+ DIFS dm'r | ImC,  (4.1)
so that the Casimir operator of the R(3) group
£ =3 (—1LL, 4.2)

can also be expressed in terms of generators of
U2/ + 1). Using then the result of Gel’fand and
Zetlin,?® we could find the matrix of £2 with respect to
the states (2.17) and from the diagonalization of the
same, the transformation brackets we are looking for.
This program has actually been implemented numeri-
cally, i.e., a computer program is available'**for / = 1.

? T, A. Brody, M. Moshinsky, and 1. Renero, Rev. Mexicana de
Fisica 15, 145 (1966).

10 G. E. Baird and L. C. Biedenharn, J. Math. Phys. 4, 1449
(1963).

11 Many Body Problems and Other Selected Topics in Theoretical
Physics, M. Moshinsky, T. A. Brody, and G. Jacob, Eds. (Gordon
and Breach Science Publishers, New York, 1967), pp. 291-377).

12 M, Moshinsky, M. Berrondo, and J. Pineda, Structure of Low-
Medium Mass Nuclei, P. Goldhammer, Ed. (University of Kansas
Press, Lawrence, Kansas, 1966), pp. 129-194.

g(fm. “f-a'a. +j - l).)

bl !
H(ﬁl’l_ff'“l +J""l;.)
o !
- E(fm—fa-z+f—lz+1)
i#1,
(41 if x>0
S(x) {_1 a2y 1Sh<A 6B

While this approach to the transformation brackets
is quite general (it can be easily extended to con-
figuration space states in several orbitals, spin-
isospin states, etc.), it is, in the opinion of the authors,
profoundly unsatisfactory, as it requires the diagonali-
zation of matrices [whose dimension incidentally
increases with that of the IR of UW.(2/ + 1)] and so
does not provide us with closed formulas. Clearly
then, what is required is a procedure by which we
could calculate explicitly the states in the physical
chain, so as to obtain a closed formula for the
transformation brackets when we evaluate the scalar
product of these states, with those of (2.17) associated
with the canonical chain.

For the sake of simplicity we shall illustrate this
procedure for / = 1, where what is required are the
polynomials in a¢,, m =1, 0, —1; s =1, 2, 3 that
are bases for IR in the W(3) @ R(3) chain.

These polynomials were obtained long ago by
Bargmann and Moshinsky,!® but in the present paper
we shall follow an analysis similar to the one given
recently for the AU(4) > U(2) + U(2) chain by
Syamala Devi and Venkatarayudu.!* This goes much
deeper into the group-theoretical nature of the
problem, is immediately generalizable to the W(n) >
R(n) chain, and, we hope, eventually to the chain of
groups (2.6b).

A. The IR of R(3) Contained in an IR of SU(3)

Our starting point is a theorem given in Littlewood’s
book!® on the procedure for getting the IR of R(n)
contained in an IR of SUW(n). For n = 3 this result

13V, Bargmann and M. Moshinsky, Nuclear Physics 23, 177
(1961).

14V, Syamala Devi and T. Venkatarayudu, J. Math. Phys, 9,
1057 (1968).

18 D, E. Littlewood, The Theory of Group Characters (Clarendon
Press, Oxford, 1950), 2nd Ed., p. 240.
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K, +K,=L even

2p
IXl j X co‘.m_l
pﬂ....,...p'
2q
- ! K,-L 22q, L»? K,-2q
! 0<2¢5K,

K;-2q 2q

F1G. 1. Diagram of the IR (i;x5) of W (3) contained in the direct
product (L) X (2p, 2q) and inequalities imposed by Littlewood
rules on the components of the partitions.
can be stated as follows: The IR of U(3) is charac-
terized by the partition [f; f; f;] and that of SU,(3) by
the partition

(regxe) = (fy — [, /o — f3)- (4.3)
On the other hand, the IR of R(3) are characterized by
the single number L giving the orbital angular
momentum. The IR of the orthogonal group 0O(3)
[which contains the group R(3) and the inversion]
are characterized by the partitions (L) or (L1). Both
of these IR of O(3) contain the same IR of R(3)
characterized by L, but in the first case the matrix
in the IR corresponding to the inversion is the unit
matrix / multiplied by (—1)X, while in the second
case, I is multiplied by (—1)F*%

Littlewood’s theorem'® states that if in the reduction
to IR of U(3), the product representation (1) x (9)
contains («) = (x,x;) a certain number of times,
which we denote by g,;,., then the IR («,x;) of U(3)
breaks into IR[A] of O(3) according to's

(r) = Z gasnlA]s
{8}

the summation being over all partitions that charac-
terize the IR of U(3) of the type (6) = (2p, 2¢9) with
P q integers and where (4) is an IR of U(3) of form
(L) or (L1). For example, the IR (32) of U(3) contains
the IR (3), (21), and (1) of O(3), and so the possible
valuesof Lwillbe L =1, 2, 3.

Littlewood’s theorem (Ref. 15, p. 240) is actually
available only for the IR (x,) of U(3) [as is pointed out
by Littlewood himself (Ref. 15, p. 294)], but it can be
extended to the partitions («,«,) of U(3) in the way
elucidated in the previous paragraph, when the
modification rules of Murnaghan!® are taken into
account. The coefficients g,;, are determined from the
usual Littlewood rules (Ref. 15, p. 94) for the reduction
of the direct product (4) X (6). We therefore have to
consider only two cases:

K+ k=L +2p+ 2, (4.5a)
ey Fug=L+1+42p+ 2q. (4.5b)
The reduction of (1) x (9) is illustrated for the two

cases in Figs. 1 and 2, respectively, in which we mark
the blocks in the single row (L) by x and those in the

(4.4

18 F. D. Murnaghan, Proc. Natl. Acad. Sci. 24, 184 (1938).
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Ki+Ky-L odd

K,-L 22q,L 2K,~2q
0€2q <Ky |

FiG. 2. Diagrams of the IR (k;x;) of “W(3) contained in the direct
product (L1) X (2p, 2g) and inequalities imposed by Littlewood
rules on the components of the partition.
rows 2p and 2g of (6) by « and B, respectively. The
single block in the second row of (L1) is marked by
y. The Littlewood rules restrict the distribution of the
«’s and B’s in the way shown in Figs. 1 and 2, so that
2p, 2q are restricted by the conditions also indicated
there.

B. Decomposition of the Diagrams into Elementary
Permissible Diagrams

Our next step will be to break the diagrams of
(#y%,) containing x, y, «, B of Figs. 1 and 2 into
elementary permissible diagrams (epd). A permissible
diagram would be any one- or two-rowed marked
diagrams that could be formed by a direct product of
the type (1) x (0) for particular L’s and 2p, 2¢’s. An
epd would be a permissible diagram that cannot be
decomposed further into permissible diagrams.

Ki+K,-L even , K,-L even
L -Kp~2q | 2 ["%(Ke=2q)] i2['n{K,-L-2q)] 2q :
[x[x] ..... [x 'TI 12 (aaf. |o:oc ax|........ xx
«cw|....... @ BB|....... BB

F1G. 3(a). Decomposition of the diagram of the IR (x;x,;) with
Ky + «g — L even, x; — L even, into elementary permissible
diagrams.

To find out the epd we need and to carry out the
decomposition in a systematic way, we redraw the
diagram of partitions («,«,) in Figs. 1, 2 by translating,
as far as possible, the blocks of «’s and s in the
second row. The expression *“‘as far as possible” takes
into account that no column should contain two o’s
or that a 8 block should not extend farther than the
end of the « blocks above it. Under this restriction we
carry out the translation in the following four cases:
Fig. 3(a): x; + x, — Levenand x; — L (and therefore
x,) even; Fig. 3(b): x; + «; — L even, k; — L (and
therefore x,) odd; Fig. 4(a): x; + x, — Lodd, x; — L
even (x, odd); Fig. 4(b): x; + x; — Lodd, x, — Lodd
(« even). We indicate the length of each segment of

Ki+K;-L even, K,-L odd

b L-Kym2q L 2['a(K,-29-1] ¢ 2 P2k L-2g-11) 2q '
EIIL l’l XX (oo XK X{&@x]....... cho: wxl........ xTx
wal......... co) @ BB .. ..., BB

F1c. 3(b). Decomposition of the diagram of the IR («.x;) with
Ky + kg — L even, k; — L odd.
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K+ K,~L odd , K,-L even
! ! ; : !
M L-K2g 4 2[ ' (Kpm2e-l)] 2 [YaiKi-L -2q)) 2q !
X xlxllx 'TI I lmm ce|......... ca
y oe®l........ xx BBRI........|1B8

F1G. 4(a). Decomposition of the diagram of the IR («,x,) with
k1 + 3 — L odd, x; — L even.
the diagrams in a notation convenient for our later
analysis.
Now we start by determining the epd in Fig. 3(a),
reading from right to left. Clearly the first permissible
diagram we see is

i(i as
BB

which is an epd, as its decomposition into the possible
subdiagrams E‘ is forbidden by the rules (4.4). There

are g epd of this type as indicated by the number in the
square bracket above the corresponding part of Fig.
3(a). Continuing the reading from left to right, we
find the permissible diagram

I « | o [ as (00) x (20) = (20), (4.6b)
which is an epd, as the subdiagram [«] is again for-
bidden by (4.4). There are 4(x; — L — 2¢) epd of this
type as indicated in Fig. 3(a). The next permissible
diagram is

(00) x (22) = (22), (4.6a)

P b
—|—| as (20) x (20)=(22) + -+, (4.60)
[+ 4 o

which is an epd, as its decomposition into allowed
subdiagrams is forbidden by (4.4). There are
3(rx; — 2q) epd of this type as indicated in Fig. 3(a).
Finally, we get the epd
[_T_] as (10) x (00) = (10),  (4.6d)
of which there are L — k, — 2g also indicated in Fig.
3(a).
A similar analysis can be carried out in Figs. 3(b),
4(a), and 4(b), noting only that in, Figs. 3(b) and
4(b), there appears, only once, the permissible diagram

Elj“ as (10) X (20) = 1) + -+, (4.60)
74

which is an epd, as the possible subdiagrams l——::|,
[z] are not permitted by the rules (4.4). Also in Figs.

Ki+K,mL odd, KL odd

] 1) 1] 1

i L-K2e ! 2['nt2e-2)] 2 fhiL-20-0] L 2q i
llll} ......... [L T ulo:o:ac, lcmu:o: [T
Y «a ‘”E\_ BB A8

FiG. 4(b). Decomposition of the diagram of the IR (i xy) with
K1 + k3 — L odd, «; — L odd.
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4(a) and 4(b), there appears, again only once, the epd

% as (11) x (00) = (11). (4.6f)

Having achieved the decomposition into epd of the
Young diagrams formed from following the analysis
of Littlewood for the determination of the IR of
R(3) contained in a given IR of SU(3), we shall
proceed to associate definite polynomials with these
epd, and later with the full states in the chain
SU(3) @ R(3).

C. Polynomials Associated with the Diagrams

The bases for the IR («,;k,) of SU(3) are identical®
to the bases for the IR [x,x,0] of U(3), and the latter
would only depend!® on two vectors a?,, s =1, 2.
From these creation operators and the corresponding
annihilation operators 4%., we can construct the
generators of the following unitary groups:

UQ); C* = 3 g™™ands,
=W§(—l)ma:nd‘_'m, 5,8 =1,2,
W(3); Cp = g g™ ™ > alak.,
= ?— l)m'Zsa:,,df.,,,,, mm =1,0, —1.
s (4.8)

From (4.1) the generators of the subgroup R(3) of
U(3) are given by £, defined by
f=—(C+ G L=(C~Cy),
£, =(C+ C%). 4.9)
As shown by Bargmann and Moshinsky,!® the poly-
nomials P(a?) corresponding to the IR (x;k,) of

SU(3) and to IR L of R(3) but of highest weight in
the latter group, satisfy the equations

(4.7)

CUP = P, (4.102)
C2p = 0, (4.10b)
C2P = i,P, (4.10¢)
£.P =0, (4.112)
£,P = LP, (4.11b)

where the C*, £,, can be interpreted as first-order
differential operators, as from the commutation
relations (2.3), the a,, when acting on polynomials
P(as), are equivalent to the operators

> g mas, = (—)"at,, = 0/das,. (4.12)
Because of this character of the operators C*, £, ,
it is clear that if we have a set of polynomial solutions
of the Egs. (4.10) and (4.11), a product of powers of
this set will again be a solution, but with different
Ky, K9, L.
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Tasie I Elementary permissible diagrams (epd) and the

IR (x;x5) of SU(3) and L of R(3) that characterize them. The

polynomials corresponding to these epd are given in terms of
the variables A? = a2, A%, = a'al, — ai.at,.

IR SU%(3) IR R(3)
L

epd (re1ka) Polynomials
|_T_| (10) i A
E an 1 AR
el an 1 we =3 (—DmARAL
L___ m
(20) 0 s =2 (—1)™ALAL
-4 o ’
22 0 t=YF(~1mmAmr Az
5|8 22) ,2, ) by
ol Bl B ) 2 S
o o

The analysis of the previous paragraph suggests
that we first consider the epd (4.6) and see what are
the polynomials associated with them. In Table I we
give each epd with its corresponding IR of $U.(3) and
R(3), and then the polynomial solution of Eqgs.
(4.10), (4.11) for those values of (x;x;), L. As the
diagrams of Figs. 3 and 4 can be broken into epd
repeated a certain number of times, the polynomial
solution of (4.10), (4.11) corresponding to a definite
(#1x2), L, can be constructed in terms of powers of the
epd polynomials of Table I. These polynomials would
be further characterized by the index ¢ associated with
the specific Littlewood procedure!® for determining
each possible way in whicn the IR L of R(3) appears
in the IR (x,x;) of $UW(3). In fact, from Figs. 1 and 2
and Table I we find that there are only two inde-
pendent cases for the polynomials:

( A})L—xﬁza( A}%)Kz—zasi‘(xl—L~2q) ta’
(4.13a)
K’y — L odd: W+(A})L—xg+2a(A}20)xg—zq—ls‘}(xl—L—Za—l)ta.
(4.13b)

The procedure we followed associates a polynomial
with each diagram that we construct from Littlewood’s
analysis,’® so we will have found all the polynomials

of our problem, and therefore all the states, if we can
prove that they are linearly independent.

«; — L even:

D. Linear Independence of the Polynomials

The states associated with the polynomials (4.13),
will be orthogonal if they differ in any of the eigen-
values «;, k;, L, since the operators C'*, C%, £, are
Hermitian. We need therefore only worry about the
linear independence of the polynomials (4.13) belong-
ing to different q. We note, from the definition of
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Al, s, A2  w, in Table I, that they depend only on
the five variables

Al A,
where, as indicated in Table I,
A =al,, A¥,. =alal, —al.al. (4.14b)
Furthermore, from the relation
AJAR, = —AL AR + AAE,, (4.15)
we see that 7 of Table I is also a function of the five
variables of (4.14), i.e.,
t = (ADAATATRATE, — 4(ATD’AL — 2A5(AE ).
(4.16)
The five variables (4.14) are functionally inde-
pendent because for example if we add to them the
variable A2, the Jacobian of this set, with respect to
theset A3 , m=1,0, —1,5=1,2,is (A1) % 0.
To see that polynomials of different ¢ are linearly
independent, let us write (e.g., for «; — L even) the

polynomial in terms of the five independent variables
(4.14):
Pk = (A}Ersty ALy
x [—2AIAL, + (ApyH- e
x [4AALALE; — 4(ATDPAL, — 2A3(AE )]
417
Now from (4.17) it is clear that the highest power of
A} appearing in P, is
[L— e+ gl + [30ca — L) — gl +¢
= [(L — x) + 301 — D] + ¢, (4.18)
so it depends on ¢, and therefore the set of polynomials
corresponding to different values of ¢ cannot be
linearly dependent. A similar reasoning applies to
x; — L odd.

The polynomials (4.13) are, of course, the same as
those obtained by Bargmann and Moshinsky!® who
directly solved the set of partial differential equations
(4.10), (4.11). The difference in the procedure of
obtaining them rests on the fact that the polynomials
in the present analysis can be obtained by inspection
from the diagrams associated with Littlewood’s
analysis’® in terms of the polynomials of the epd,
which are very easy to determine. Furthermore, the
exponent g acquires a definite meaning associated
with the Littlewood analysis'®; finally, the procedure
can be extended to the chain W(n) > R(n), as Little-
wood’s analysis was, in fact, carried out for arbitrary
n. This last point is very important, as the analytical
procedure of Bargmann and Moshinsky'3 is based on
divisibility arguments very difficult to extend to cases
where we have more than one free exponent of the
type g, as happens, for example, already in the case of

1 12 12
—1» 10> 1-1>»

(4.14a)
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WU(4) © R(4), of great importance for the fpc of
spin-isospin states. The present technique will be
applied to the U(4) = R(4) chain in future publica-
tions.

E. Determination of the Transformation Brackets
from the U(3) > R(3) to the Canonical Chain

In the case / == 1, the transformation brackets we
need to determine are

f13f23f33 f;l3f23f33

k00 [ K0

Sf1afos qLM = fif: | LM
Sfu 1
(4.19a)
where
ks = fis — fas» fi=fae—fu, s=12,
1=fu — fas- (4.19b)

Equation (4.19) stems from the fact'®-17 that both in
the canonical chain and the “U(3) = R(3) chain, there
is a term (A}2%,)7ss, where
a; ap

A =|al ap aly,

a® a) a3,

a',

(4.20)

14,0 | rey150
1#6V | KKy
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with a corresponding normalization factor that dis-
appears in the scalar product,’” so we need only
concern ourselves with the S°UW(3) transformation
bracket in the right-hand side of (4.19a). Furthermore,
as

0\ _ [(L + M)! 2L-M] fe year [ a0
gLM (L—Mmren] gLL/’
(4.21)

and £_, is given by (4.9), the transformation bracket
(4.19a) for arbitrary M could be obtained from the one
with M = L and the well-known matrix elements®1
of C™ with respect to the canonical chain. For the
case M = L, the ket (4.21) is given by the polynomials
(4.13) acting on |0). As the polynomials for the canoni-
cal chain are also available,’” the scalar product
(4.19a) for M = L could, and in fact was, evaluated
in Ref. 17. We note from the way the indices m = 1,
0, —1 were enumerated in Ref, 17 that, in (4.19a),

M =2f{ = (fi +f2) (4.22)

and so the transformation bracket (4.19a) for M = L
depends only on «,, «5, 9, L, f,, f; and is given by

fifs | qLL
1”

_ [[%(fl’ =+ DV =+ DU + D — fs + D] — wo)! (6 — f{)!]*
B —ff — D' (kg — k2 + D! (ke -

B — L — p)]! p! (1 — B)!

% (_ 2)i(f1'—fz’

with p even (odd) if x, — L is even (odd) and

E¢ = (;P)(—n# if peven, E,‘§=( q

where the formula (4.14) in Ref. 17 was simplified
using the following identities twice:

‘a—a)(b+a)! bl@a—0ol(a+b+1)!
cl@+b—c+ 1!
4.24)
We note that in Ref. 17 the enumeration of the
indices m =1, 0, —-1 is 1—-1, —1—>2, 03,
while in the enumeration of (2.20b)itis1 — 1,0 — 2,
—1— 3. To apply the transformation brackets (4.23)
to the Wigner coefficient (3.8), we must then either
apply first the transposition (2, 3) to the bra in (4.23),
which gives the explicit result of Chacén and Mos-
hinsky,'® or what is much simpler, apply the trans-

1]\ e
which implies onl
[ﬂ / p y

ol (¢ — a)!

a=0

position (2, 3) to the states

17 M. Moshinsky, Rev. Mod. Phys. 34, 813 (1962).
18 E, Chacén and M. Moshinsky, Phys. Letters 23, 567 (1966)

—L) E¢
Ry s [ TP Tk

(4.23a)
—1eV if podd, 4.23b
;(,,_1))( P it po (4.23b)
the interchange
1T\ ‘ 17\
‘u /<——> [3} ) (4.25)

Combining (4.23) and (3.8) for k = 3 and taking
into account the observation of the previous para-
graph, we can get the fpc in the p shell

(=1L, (=1 [} (= Df4L)

for arbitrary n in a closed form. A very interesting
point though is that these fpc are in a nonortho-
normal basis, i.e., they are characterized by the
numbers ¢, ¢ that are not eigenvalues of any operator,
but appear through the Littlewood analysis’® for
finding the IR of R(3) contained in an IR of SU(3).

It is possible to transform these fpc to an ortho-
normal basis through the eigenvalues of the Hermitian

(4.26)
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operator
Q — %(Cmm’ + G'm’M)QQO’, Crm — z gmm”eﬁfl’
4.27)

introduced by Bargmann and Moshinsky,'® but this
would imply again a diagonalization of matrices, and
so there would be no closed form. Clearly this brings
in the view, first presented by Racah,® that a non-
orthonormal basis may provide a much deeper and
simpler description of the states characterized by
noncanonical chains of groups than does orthonormal
basis.
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APPENDIX: THE EVALUATION OF THE
MATRIX ELEMENT OF a

The set of vectorsaé,,u =1, ,k;s=1,-"+,k
could be considered as components of a single k-
dimensional vector. On the other hand, the states
(2.17), asindicated in Ref. 6, are actually characterized
by two Gel'fand patterns, one for index u, and
another, of highest weight, for the index s. The
matrix ¢lement (3.4) should be rewritten to take this
into account. Using the decomposition (3.6), both
with respect to the u and s = k indices, we get

S foe fu fl’ck fik e fk'—l.k 0 fik T f;ﬁ_l.k 0
fll.k—l fk,—l,k—l . S o flé—l,k a® f{,k—x fk’—l,k-—l . fllk e lec—lk
> - {2 ’ e
fi Six fu Fie
S fl::k f;k "'frlc—l,k 0
={fu " fulla ”fik o 'fk,—l.lc 0) flpa oo frlc—l.k—1 Currt ]{,k—l o 'fkl—1,k—1
fu fu
Six Sra Fo oo fl::—l,k 0
X fie 7 fix Ccrrtt Fu o Frr (A1)
S St
To determine the last matrix element we note that
CHIHCELE _ CLECREHL . Okk _ CRHLEH (A2)
so that evaluating the left-hand side between the states
fix S O fix S O
Fix Fiix O Fix f;:—l,k 0
Fie o Fear CHFHICEHLE _ CRALECEEH fie o Femi = —1 (A3)
i e

where the value —1 on the right-hand side has to do
with the eigenvalues®® of C¥ and the relation (3.7).
Furthermore, as C*™* js the lowering?® operator

% G. Racah in Istambul Lectures, F. Gursey, Ed. (Gordon and
Breach, Science Publishers, New York, 1962).

20 J. Nagel and M. Moshinsky, J. Math. Phys. 6, 682 (1965); Rev.
Mexicana Fis. 14, 29 (1965).

LY, ., which decreases the last term of the second row
of the ket by 1, and as this term is zero already, the
matrix element of the first product in (A3) is zero.
For the second product, as C**+1 js a raising gener-
ator, it can only take us from the ket in (A3) to the
highest-weight state of U.(k + 1), associated with the
partition [f], - fi 0. We obtain therefore from
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(A3) that the square of the last matrix element in (Al) is equal to 1; because of the phase convention
used,? it is actually 1.

The matrix element of C, ,,, was obtained by Gel'fand and Zetlin®; in our notation,?® using the relation
(3.7, it is given by

fo v fa O fo e g0
Jiw e e o 0 Tiax O
Fies " fraaa Curn Fira  Frorim
I Fa
k
=p=I‘-‘I|_1S(lP—1 - lﬂ)[(]l’pp - f{p—lﬂ—l + lp—]_ - lp)(]llpp _fllp_lp—l + lp-—l -_ lp + l)l_é
A-1 A+l 3
o | T Fia = Fesa + = L+ DIT s = Fean + 10— 1)
X H = A 2 )
A=n H(]llll_];c).'!""_l}.'*'l)]_:];(f“_}__f,’(;"i‘K—ll)
i = |
k-1 "

k
TT i = Jena 4 6 = b+ DI Gl = Fra+ 6 — 19

— =k k_

I (i — Fra + = L+ l)lTl(fz'kk — e+ —1)

k=1 K=

K Kk¥Ely

(fl’kk+k+1—lk) ’

+1 if x>0,

A4
—1 if x<0. (A4)

S(x) = {

The first matrix element in (A1) was obtained in a paper of Brody, Moshinsky, and Renero® and is given
by

3
H (fz,k _f;k +ji—i+ 5izk - 511,;)
i fall @ i+~ Fias 0) = | _asiize " | @y
(fowe +k—5L+ 1) H (foo—Fre+i—1
1=i<ji<gk
Combining (A4) and (AS5), and taking into account the following product identities:
k
H (lek'—f:ilk +j—i+ 5z'zk - 611;,) = H(fl’kk—fl:'k+ K= lk+ 1),
1<i<§<pk x=1
k
II (ft,'k—fgk+j_i)=H(]lIkk—fl’ck+K_lk)’ (A6)
1<i<i<k x=1
K#E1g
k k
H(fl;,k_ faetx—h)= _].—_.[1(fl’kk — e+ — 1),
xk=1 KK;lk
we obtain finally that the matrix element of (A1) has the value
k
IT 8Cpms = DIFipp = Fipips + lpss = XFipp = Fiyips + lpma = 1 + DI
o -1 A+ 3e—1 , b3
) I —Ffeaa+x—0L+ l)l_Il(fz’lz —frante—1) r];(fzkk ~ferate—L+1)
Fe— x=1 K= K=
X H 2 A x ) v
A=u ]:l_i-(fz’;_l“f;;.'*"(—l;.+1)].__|i'(fz,,1;.—];;.+"“'l}.) ]_-];(ftkk—']l,ck'*"(_lk)
::l). ::ZA ::lk

(A7)
Making use of the relations (3.2b), we can then obtain the one block Wigner coefficients given in (3.8).
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Hermite’s reciprocity law is applied to the calculation of the angular-momentum states of equivalent
particle configurations. Connections between boson and fermion states are considered and a method is
given for determining the number of times a given term appears in /° without requiring a complete term
analysis. A succinct expression for the number of S-states arising in the [2?] representation of Ry;y,

under Ry, — Ry is developed.

I. INTRODUCTION

The group-theoretical classification of the angular-
momentum states of equivalent electron or nucleon
configurations is well known.'® In LS coupling, the
orbital angular-momentum states of the n-particle
configuration [* are classified using the chain of
groups

Usip1— Reyyy — Ry,

Y
while in the jj-coupled configuration j”, the chain of
groups
Usivr = Spaj1— Ry @
is appropriate.
The irreducible representations of the unitary
group Uy in N dimensions are labeled by partitions

{41, 42, * - -, Ay} of the integer n into not more than
N parts where

11?.122"'211\720 (3
and

A+t -+ Ay=n @

The character of the irreducible representation
{A1s Aay oo+, Ay} is just the S function {4;, 4,, -,
Ay} formed on the characteristic roots of the N x N
unitary matrices that constitute elements of the group
Uy. Littlewood* has exploited the properties of
S-functions to express the characters of Uy as a
linear combination of the characters of Ry or Spy
and, conversely, he has developed prescriptions for
expressing the characters of Ry or Spy in terms of
S-functions defined on N variables. If the decomposi-
tion of the character of the irreducible representation
{A1, Aoy, Ay} of Uy into the characters of the

* Research sponsored in part by the Air Force Office of Scientific
Research, Office of Aerospace Research, United States Air Force,
under AFOSR Grant No. 1275-67.

1 H. A. Jahn, Proc. Roy. Soc. (London) A201, 516 (1950).

2 B. H. Flowers, Proc. Roy. Soc. (London) A212, 248 (1952).

3 B. R. Judd, Operator Techniques in Atomic Spectroscopy
(McGraw-Hill Book Co., New York, 1962).

4 D. E. Littlewood, The Theory of Group Characters and Matrix

Representations of Groups (Oxford University Press, London,
1950), 2nd ed.

irreducible representations of R; is established, then
the corresponding decompositions under the restric-
tions Ry — Ry or Spy — R; may be found by the
method of differences.® Thus, the principal problem in
using the chains of groups, given in Egs. (1) and (2),
to classify angular-momentum states is the deter-
mination of the character decompositions under the
restriction Uy — Rj.

In the present paper we briefly discuss the calcula-
tion of the character decompositions under the
restriction Uy — R;, emphasizing in particular the
applications of Hermite’s law of reciprocity®? which
lead to a number of illuminating correspondences
between the angular-momentum states of many-boson
systems with those of many-fermion systems. Finally,
a simple method is given for determining the number of
times a given representation of R; occurs in the decom-
position of the irreducible representations {4,, 4,, 43}
of Uy where 4; + 4, + A; = 3. This leads to a simple
prescription for determining the angular-momentum
states in any /2 or j2 configuration and the distribution
of S-states in /* or j4.

II. BRANCHING RULES UNDER U, — R,

Littlewood’s algebra of plethysm®® may be readily
used to obtain the branching rules for U, — R; or

Usj1 — R, by evaluating the terms contained in the
plethysms

[l]®{2’1’229‘."2’N} and [j]®{}'ls}'29"'a}‘N}’
)
where, under Uy, —> R;, {1}— [I], and under

Usjs1— Ry, {1} — [j]. Littlewood!® has used the

® F. D. Murnaghan, The Theory of Group Representations (Johns
Hopkins Press, Baltimore, 1938).

® F. D. Murnaghan, Proc. Natl. Acad. Sci. 37, 439 (1951).

? F. D. Murnaghan, The Unitary and Rotation Groups (Spartan
Books, Washington, D.C., 1962).

8 D. E. Littlewood, Phil. Trans. Roy. Soc. (London) A239, 305
(1944).

® D. E. Littlewood, Phil. Trans. Roy. Soc. (London) A239, 387
(1944).

19 D. E. Littlewood, Proc. London Math. Soc. 50, 349 (1948).
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known isomorphism between the representations [u]
of the ternary orthogonal group and the representa-
tions {2u} of the binary full linear group to evaluate
the plethysms of Eq. (5) in a direct manner. In this
case we focus our attention on the evaluation of the
plethysms

{21} ® {ﬂ'l’ )*2’ Tt }'N} and {2]} ® {}“la j'2, Tty }'N}'

(©)

Each partition into two parts {u;, u,}, which arises
in the binary analysis of the above plethysms, may
be converted into a partition into just one part by
making use of the equivalence

{5 po} = {pn — pa}. Y

Thus, the character decompositions under Uy, ; — Rg
and U,,,; — R; may be found by simply replacing the
characters {2u} that arise in the plethysms of Eq. (6)
by the characters [u] of Rs.

The operation of plethysm is distributive with
respect to multiplication on the right and thus we may
establish the equivalence

ARBC - X)=(A®B)(A4®C):--(4®X). (8

This simple result may be used to simplify the evalua-
tion of the plethysms of Eq. (6) by noting that any
S function having N parts may be written as a linear
combination of products of S-functions having one
part by use of the determinantal relation,*

{}“132'2’°'°,2'N}
D
|- ) @+n ,
Ty~ 1) (i}
©)
e.g.,
@ 5
@.3,1=|2 3 @
0 {0 {1

= {62} + {4{3H1} — {SH2H1} — {4H4}.

Thus, noting Eqs. (8) and (9), we conclude that every
plethysm of Eq. (6) may be evaluated in terms of the
simpler plethysms {m} ® {n} where m and n are
positive integers.

III. HERMITE’S RECIPROCITY LAW

Hermite’s reciprocity law states that® “the number
of invariants and covariants of degree m of a binary

B. G. WYBOURNE

form of degree n is the same as the number of in-
variants and covariants of degree n of a binary form of
degree m.”” In terms of plethysm, this is equivalent to
the statement that the binary analysis of the plethysms
{m} ® {n} and {n} ® {m} for the linear group of any
dimension coincide, i.e.,
{m} ® {n} = {n} ® {m}. (10)
Murnaghan? has used this result to deduce the im-
portant recursive relation
meon=men-2t+{m-2e{
+({(m-1}e@{n-1)
X{m+n—-1}—{m+n-—3}).
(11
Furthermore, for the group GL, we have:
(a) if pis any positive integer p > m + k — 1, then

pm+n—13 —{m+n—3}

={p+tm+tn—1}+{p—m—-—n+1} (12a)
(b) ifp=m+ n— 2, then
pPm+n—-1}—{m+n-3})
={p+m+n—1} (I2b)
and
() ifp<m+n—3,then
{pim+n—-1t—{m+n-23}
={p+m+n—1}—{m+n—-3—p} (12)

Equation (11) gives a rapid method for determining
plethysms of the type {m} ® {n}, and is particularly
suited to machine calculation. Relevant tables of these
plethysms are being published elsewhere.!!

IV. BOSON AND FERMIONS

The plethysm {2/} ® {1*} plays a key role in the
determination of the orbital angular-momentum (L)
states of maximum multiplicity in /N-type configura-
tions of LS-coupled fermions, while the plethysm
{2j} ® {17} is important in describing the total
angular-momentum (J) states in j"-type configurations
of jj-coupled fermions. Alternatively, we may identify
the analysis of the plethysm {m} ® {1"} with the totally
antisymmetric states of a system of » identical
particles, each of angular momentum m/2.

Correspondingly, the analysis of the plethysm
{m} ® {n} may be identified with the totally symmetric
states of a system of »n identical particles, each of
angular momentum m/2. Physical realizations of these

11 B, G. Wybourne, Symmetry Principles and Atomic Spectroscopy
(John Wiley & Sons, Inc., New York, 1969).
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states would occur where the identical particles are
bosons.

Murnaghan’ has shown that in the case of the
binary full linear group, Hermite’s reciprocity prin-
ciple leads naturally to the identity

Mmeo{lt=m+1—-—ne{n, m+12>n

(13)
This result gives a direct link between the totally
antisymmetric states of a configuration of » identical
particles each having angular momentum m/2, and the
totally symmetric states of a configuration of » iden-
tical particles each having angular momentum (m +
1 + n)/2. For example, with m = 8 and n = 3 we see
that the totally antisymmetric orbital angular states of
g® are the same as for the totally symmetric orbital
states of /3. With m = 8 and n = 4 the correspond-
ence is between g and (3)%
If Eq. (10) is used on the rhs of Eq. (13) we obtain
the result

meo{lt=Mem+1—n, m+12n,

(14

from which we conclude that the totally antisymmetric
orbital states of n identical particles each of angular
momentum /2, are the same as the totally symmetric
orbital (m + 1 — n) particles each of angular momen-
tum n/2. For example, with m = 8 and n = 4, the
correspondence is between the antisymmetric states
of gt and the symmetric states of d°.
If Eq. (13) is used again in Eq. (14) we find

{m} @ {1} = {m} @ {1""~"}. (15)

In terms of jj-coupled states, the above relationship
corresponds to the well-known particle-hole equiv-
alence theorem'? that states that the angular-
momentum states occurring in j" are the same as those
in j#*1-n_In terms of LS-coupled states, Eq. (15)
demonstrates the equivalence of the orbital angular-
momentum states in [* and [#** for states of
maximum multiplicity, the so-called quarter-shell
symmetry.!?

Equations (13) and (14) are particularly valuable
in enumerating the angular-momentum states of
Jjj-coupled configurations and of the orbital angular-
momentum states associated with the states of maxi-
mum multiplicity in LS-coupled configurations,
since they reduce the problem down to the evaluation
of plethysms of the simple type {m} ® {n}. For
example, the orbital states having maximum spin in

12 A. de Shalit and 1. Talmi, Nuclear Shell Theory (Academic
Press Inc., New York, 1963).
13 B. R. Judd, Phys. Rev. 125, 613 (1962).
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g* are readily determined from the correspondence
Beo{l={5c{#4.

V. THREE-PARTICLE CONFIGURATIONS

The preceding results may be readily applied to the
angular-momentum analysis of configurations of
three identical LS-coupled particles, i.e., the con-
figuration 2, In GL, we have

{25y ® ({17{1}) = 2I} ® {13} + {21} ® {21}. (16)

The terms in {2/} ® {13} give the orbital angular-
momentum states associated with maximum spin
(S = 3), and those in {2/} ® {21}, are those associated
with spin S = 4.

We first establish the orbital angular-momentum
states without regard to their spin classification. The
lhs of Eq. (16) may be written [using Eq. (8)] as

{21} ® (1*}{1}) = ({21} ® {1*H{21}

-1
=Y {4l — 2 — 4a}{21}, (17)
a=0
where
I—120a2>0

and « is a positive integer.
Recalling Eq. (7) and multiplying the S-functions
in Eq. (17) for the two possibilities:

(@) 41 — 2 — 4o > 2l ie, I — 1> 20> 0,

(18)

{4 — 2 — 4o}{21} = § {61 —2 — 4a — 28}, (19)
=0

where f is a positive integer and where
202 8 2>0; (20)
(b)dl—2—4a<2,ie,20—22>220>1—-1,

4]—2—4a

{4l —2 —4a}{2l} = > {6l —2 — 4a — 28},
= @1)
where
4/ —2—4a >4 2>0; (22)

we conclude that the given value of the orbital
angular momentum L occurs if

Qe+ p=31—L—1, (23)

where « and f are positive integers subjected to the
restrictions of Eqs. (18)—(22).

As an example, consider the case of k3, i.e., I =T7.
Case (a) involves the restrictions 6 > 20 > 0 and
14 > f > 0, while case (b) involves the restrictions
6 >« >4 and 26 — 4a > 8 > 0. Furthermore, Eq.
(23) is only satisfied if 2o + =20 — L. Using
these results to enumerate the partitions («, §) that
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TasLe 1. Enumeration of the orbital states of k2.

L 20 + B (o, B) nL
0 20 (3, 14) 18
1 19 A 1P
2 18 @, 10) @2, 14) 3D
3 17 1 3F
4 16 s, 6) {1, 14) 5G
5 15 A SH
6 14 6,2 ©, 14 71
7 13 1 X 1K
8 2 (6, 0) 7L
9 1 6M

10 10 s, 0 6N

1 9 ¥ 50

12 8 @, 0) J 50

13 7 4R

14 6 (3,0 4T

15 5 : U

16 4 2,0) 3V

17 3 2W

18 2 1,0 2X

19 1 ¥ Y

20 0 ©, 0) z

satisfy Eqgs. (18)-(23) as in Table I rapidly gives the
orbital states of k2.

The orbital states associated with S = § in I* may
be readily determined by first analyzing the plethysm
{2} ® {3} in terms of the recursive relation of Eq.
(11), and the known result® for {2/} ® {2}, to give

on e (3)
- }:o{2(l — %)} +§ l;i:{a — 2 — 4o — 4}

x ({21 +2 — 2o} — {21 — 2a}), (24)
and then noting the restrictions on /, «, and g that

arise in performing the S-function multiplication in
terms of Eqs. (12a)-(12c). In this way, we readily
establish that subject to the restrictions

I>2x2>0, I—1>a20,
and

I—1—a2>=2p820, (25)

the angular-momentum state characterized by L
occurs once, whenever L = [ — x or whenever « and
B satisfy the conditions

3a+28=31—L or a+28=1I1—2—L. (26)

TasLE II. Calculation of the states of maximum muitiplicity in 2.

(L) in
L (L)in x (L)in3a+28=18 — L a+28=4~—1L (-L)ina+28=L+5 nL
0 1 4,0 2,1) 0,2 5,0 3,1) (1,2 15
1 1 G0 (1,1 41 (2,2) (0,3)
2 1 @2.0) ©,1) (3.2) (1,3) 1D
3 1 5,0 1,0 2,3 0,49 1F
4 1 4,1 ©, 0) 1,4 2G
5 1 3,2 ©,5 1H
6 1 “,0) 2,3) k74
7 1 , 1,4) 2K
8 , ©,5) 2L
9 (3,0 1,3) 2M
10 , 0, 4) 2N
11 10
12 @, 0) , 3) 20
13 , 1R
14 , 2) 1T
15 1,0 1U
16 ©, 1) 1V
17
18 (0, 0) 1X
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TaBLE III. Terms of k3.

Ul 5 Rl 5 L

{13} [1%91 “SDFG,HI,K,L:M,N;OQ.RTUVX

{213 [21] *PDyF;GHJ K LsMN,0,Qs R T U VoW XYZ
[ K

From the resultant, we subtract the number of times
L satisfies the condition

«+28=L+1—1 27N

Thus, to establish the orbital states associated with
maximum spin in k3, we note from Eq. (13) that

{14} © {1} = {12} ® {3}
and from Eq. (25) that

52x20, 52220, and S—a2>p82>0.

Using these results in Eqs. (26) and (27) we readily
deduce the results of Table II. The terms associated
with § = 1 may be found by subtracting the entries of
nL in Table II from the corresponding entries in
Table I, to yield the final classification of k® under
Uso— SU; X SU3— SU, X Ry3— SU, X Ryas given
in Table I11.

The procedure we have outlined has the advantage
over the traditional methods of giving the number of
times a given L value occurs, without requiring the
complete enumeration of all the states of /2, and is
particularly useful in the systematic investigation of
the properties of equivalent particle configurations
having large values of angular momentum.

The classification of the states of j may be made in
a similar manner. A term with total angular momen-
tum J is found for every solution of the equation

20+ 8=3%—-1—-1J, (28)
where, for j — 1 > 2 > 0, we have
2j2820 (29a)
and, for 2j — 2 > 2« > j — 1, we have
4j -2 —~4au>p>0. (29b)

The states associated with the {13} representation of
Us;41 are found by replacing Eqs. (25)-(27) by the
analogous equations

Jj—12x20, j—12>2a20,

J—t—a2p$20, (25"
3a +28=3—J or a+2=j—2~—J, (26"
a+28=J4+j—1, 27"

and noting that
21"t =2j+1—n} @ {n.

and

(30)
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VI. NUMBER OF § STATES IN M

Judd™ has shown that, while the Coulomb energies
of a configuration of equivalent electrons /" are
expressible in terms of just (/+ 1) Slater radial
integrals, the relative Coulomb energies of the terms
of maximum spin may be expressed in terms of a
number of parameters equal to the number of §
states contained in the representation [22] of Ry;,;.
These parameters correspond to the particular linear
combinations of the (/4 1) Slater integrals. The
results obtained for /2 may be applied to give a
remarkably succinct expression for the number of
S states that occur in [2%] of Ry, for any /. We obtain
this result as follows.

We first note that under Uy, ,; — Ry, the irreducible
representations {2} and {12} yield no common terms,
and hence the product {2}{12} cannot yield an § state.
But by ordinary S-function multiplication,

{2117 = {21} + {31}
and, hence under U, ; — R;, neither {212} or {31}
can yield an § state. Furthermore,
{1} = {1} + {21%},
from which it follows that the number of S states in
[14] of R,;.4 is equal to the number of times L =/
appears in the states of maximum multiplicity of 2,
which is itself equal to the number of partitions
(«, ), such that
30 +28=2] where I—-12>a>2
and
l—-1—a>82>0, (31
a result that follows as a consequence of Eqgs. (25)-(27).
In deriving this result we have made use of the fact
that the number of § states in [1¢] of Ry, is the same
as that in [4], which follows upon noticing that
22t = {4 + 2%+ 81} 2 (1 + DS, (32a)
{12H{1%} = {1} + {2%} + {213} > IS. (32b)
Equation (31) can only be satisfied if « is even, from
which we conclude that the number of S states in
[14] of Ry, is equal to the largest integer = such that
37 + x = I where [ > x. It follows from Eq. (32b)
that the desired result is that the number of S states in
[2%] of Ryyy is I — 1 — 7. Thus, we may readily
determine the number of S states in [22] without
knowing the complete decomposition under

Ry y — R,
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Complementary upper and lower bounds are derived for the ground-state energies of Hamiltonians
H =k + V, where V is positive-definite, by considering the Schrédinger equation in an integral form.

Some simple applications are presented.

1. INTRODUCTION

In this paper, complementary upper and lower
bounds are derived for the ground-state energy
E of a Hamiltonjian H which can be decomposed in
the form

H=h+V. @

It is assumed that the operator V is positive-definite
and can be regarded as a perturbation to 4, which we
suppose has eigenvalues {e,} and normalized eigen-
functions {¢,}. Further, we assume that p, the
ground state of H, is approximated by ¢, and that E
lies between ¢, and ¢, , the two lowest eigenvalues of

h, ie.,
Eo < E < €1. (2)

Adopting a customary starting point of perturbation
theories,! we consider the Schrédinger equation

(h—Eyp=—Vy ©)
as an equivalent integral equation
w(r) = o) —fJC(r, OV (e)y(s) ds, @
which is subject to the condition
E— o= [0V ar ©®)
The operator
K= 82 ©
n>0 €, — E
is the integral operator with kernel

n>0 €, — E

For simplicity, let all functions be real. Then J(r, s)
is a symmetric kernel in the ordinary sense and by
virtue of (2) it is also positive-definite.

Recently,? complementary variational principles

* On leave from Mathematics Department, York University,
England. The author is most grateful to the Battelle Institute for a
visiting Fellowship.

1 p. M. Morse and H. Feshbach, Methods of Theoretical Physics
(McGraw-Hill Book Co., New York, 1953), Chap. 9.

2 p. D. Robinson and A. M. Arthurs, J. Math. Phys. 9, 1364
(1968).

have been developed for integral equations of the type

m{®(r)} = f K(r, s)D(s) ds, ®)

which have symmetric positive-definite kernels, and
here that theory is applied to Eq. (4). Implicit upper
and lower bounds are obtained for E, which can be
simplified to yield explicit bounds in certain instances.
To illustrate the formulas, they are applied to the
heliumlike atom and the perturbed linear oscillator.

2. COMPLEMENTARY BOUNDS
Equation (8) reduces to (4) with the substitutions

() = V(r)p®) ®
m(®) = ¢y — V710 = ¢y — . (10)
The theory of Ref. 2 then shows that the functional

1) = [ 4V@R@ dr =Gl VIp (D

and

has complementary lower and upper bounds

G(Y) < I(y) < J(O), (12)

where

G(¥) = f [—(VE)K(PY) — TVY + 24,V'¥] dr,
13

10 = [1vexre)

+ {¢ — K(VO)}V{dy — K(VO)}] dr, (14)

and ¥ and © are trial functions. That G and J are
indeed lower and upper bounds is easy to see directly
from the relations

I—G= f (V¥ — WIK{VCE — 9)
+ (¥ — V(¥ — p)]dr >0,
J—I= f V(O — PIK{V(O — 9}

+ [K{V(® — v} IVIK{V(O — y)} ]} dr > 0.
(16)

(15)
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(The first-order terms in (V" — ) and (® — o) have
disappeared from (15) and (16) by virtue of (4) and the
self-adjointness of K.) Thus from (5), (11), and (12)
we have the result

GY) < E— ¢ <J(0), a7

which gives implicit bounds for E, since the functionals
G and J depend on E via the operator K.

3. SIMPLE EXPLICIT BOUNDS

If we take as trial functions

Y =0 =al 4, (18)
where « is an arbitrary factor, then, since
K¢y =0, 19)
(13) and (14) simplify to give
and G(aV ') = 20 — (| V7 | o) (20)
J@V 7 bo) = (ol V |$o) = En, @D

E, being the first-order perturbation correction to
€. If we choose

o = (ol V" )" 22
to maximize (20), then the result
(Gl V' ido) " < E—e < Ey 23)

is obtained.

The upper bound for E in (23) is well known for
nonnegative perturbations, and the lower bound has
previously been founrd as an example of partitioning
and projection techniques.®>® The derivation here is
elementary, and exhibits the complementary nature of
the bounds.

An illustration of (23) arises for the ground state
of a heliumlike system with nuclear charge Z > 2, so
that condition (2) holds. With

$o = VAl ﬂ)e—Z(r1+n), V =1[ry, (24)
(23) becomes
BZ<E+272*L iz, (25)
which gives
—3.0857T < EL 275 26)

for helium when Z = 2.

4. BRILLOUIN-WIGNER BOUNDS

Another simplifying choice of trial function
involves yx(E), the first-order Brillouin—-Wigner cor-

3 P..0. Lowdin, Phys. Rev. 139, A357 (1965).
£P..0. Lowdin, J. Chem. Phys. 43, S175 (1965).
5 J. H. Choi and D. W. Smith, J. Chem. Phys. 45, 4425 (1966).
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rection to ¢,. This is defined by

x = —K(Véy) @7

or, equivalently, as the acceptable solution of the
nonhomogeneous equation

(h — E)y = (E, — V)do- (28)
If we set
Y= ﬂ¢0’ 0= 'y¢0’ (29)
then (13) and (14) reduce to
G(ﬂ%) = ZﬂEl - ﬁz(El - 82) (30)
and
J(ydo) = E1 + 2y8; + y¥(§; — &), (3D
where
85(E) = (x(E)| V]do) < 0 (32)
and
84(E) = (x(E) V |2(E)) > 0. (33)

The signs of &, and &, are consequences of K and V
being positive-definite. Choosing

E &
f=—"—r, :
El"'gz

(34)

to maximize G and minimize J, we obtain from (17)
the result
E2 2

L E < E——
E, - & & — &,

Jmin’

(33)

which may be written in the alternative form

1 1) 1 &)

gl sE-o-msfg-g - @

The bounds in (36) are still implicit, because &,

and &; depend on E. However, progress is possible

because as E increases, &;(E) decreases, and therefore

so does the lhs of (36) decrease. Thus by using an
upper bound E, for E, e.g.,

E,=¢c+E 37

(or a better one if available) on the left of (36), we get
an explicit lower bound
1 1

~Ycp s
8(E,) 5 SE 69

E *=¢ + E; +{

Whenever

d

— @&+ 8 0, 39
dE( 2 + &) < (39
the rhs of (36) increases as E decreases. Then the lower
bound E_ can be substituted for E to give a better
upper bound and this iterative process continued to
improve both bounds.
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As an illustration, we consider the linear oscillator
with
1 i Y
=5(x2—ﬁ), $bo=7te", =14, (40)
in the two cases (i) V = Ax?, and (ii) ¥V = 4Ax%, 1 > 0.
If we introduce a function f(x) so that
X= /s ¢0 ’ (41)
then (28) gives
2
9wy eE-nf=2v -E) @
dx? dx
which can be solved for fin these cases. The following
results are obtained:

(i) Perturbed oscillator; V = ix%*, 1 > 0O:

A
1 — 2x%);
s_E )

2 -7
5—2E° ° (5—2Ep’
_12 _12
— < E- 1+ HL—.
5—2E 4217 K )—(5—2E)+5/1
Successive bounds with A = }:

E, = 0.6250, 0.6126, 0.6126,
E_ = 0.6153, 0.6104, 0.6104
[true E = 3(1 + 22)} = 0.6124].

(ii) Perturbed oscillator; V = Ax*, 1 > 0:

E =13 f=

&= —

E, = 34;
A [g.as—zE)_ 24x* _2x4]_
9—2El2 (5—2E) 5-—2E ’

f

PETER D. ROBINSON

3 1
8 = —32 .
: [5—2E+9—2E]’
e 9/13[ 39
3 = e A2
2 (5 —2E)
56 41
+ )
(9 — 2E)(5 — 2E) + © - 2E)2]

Successive bounds with 4 = }:

E, = 0.6875, 0.6329, 0.6329,
E_ = 0.5957, 0.5970, 0.5970
(true E = 0.6209).

5. DISCUSSION

More sophisticated bounds can be derived from
(13) and (14) by using such trial functions as

V-i(h — E)Y

(KV)"$q

or optimized linear combinations of them. Léwdin®
has discussed the use of the Brillouin-Wigner cor-
rections (44) in obtaining bounds; the lower bound in
(35) would seem to be a corrected version of Eq. (134)
in his paper. However, it is not our aim to present
highly accurate formulas. These are to be found in the
tours de force of Lowdin,>* and of Bazley and Fox.®
We are primarily content with emphasizing the
complementary nature of the bounds G(¥) and J(©),
and showing how easily they can be derived.

43)
or
(44)

% N. W. Bazley and D. W. Fox, Phys. Rev. 124, 483 (1961);
see also further papers cited in Ref. 3.
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Calculations are made on the dynamics of a familiar lattice model: the simple cubic lattice with central
and noncentral harmonic forces between nearest neighbors only. For the case of equal force constants,
natural extensions are made of existing analytical approximations for the spectrum of squared frequency.
The behavior of the spectrum near its singular points is described more accurately than before and ex-
pressions are derived which make it easy to obtain the density of modes at any frequency to about one
part in a thousand. The new description of the spectrum is used to improve existing approximations for the
classical momentum autocorrelation function for the infinite lattice p(7), and for the function X ;(+') used
by Goodman in calculations on the response of surface atoms in a semi-infinite lattice. Good agreement
with numerical results of Goodman for " = 20, 25, and 30 is obtained. The results for the spectrum also
apply to the density of states of electrons in a simple cubic lattice in the tight-binding approximation.

1. INTRODUCTION

Probably the most tractable crystal model which
shows a reasonable three-dimensional vibrational
behavior is the infinite simple cubic lattice with central
and noncentral harmonic forces between nearest
neighbors only. It has the special feature that the
components of displacement along the three co-
ordinate axes are uncoupled, but in spite of this its
qualitative implications are similar to those of more
realistic three-dimensional lattices. The model was
used as early as 1927 by Waller,! but recent interest
has followed mainly frem work done in the 1950,
particularly that of RosenstocK *and his collaborators.
It has frequently been taken as a starting point in
discussions of the influence of defects on lattice
dynamics and a number of workers*~? have used it in
calculations of correlation (or response) functions.
A substantial part of the work done with the model has
been reviewed by Maradudin, Montroll, and Weiss.?

The chief merit of the model is that it has permitted
many interesting questions to be studied analytically.
A full plot of the frequency spectrum has apparently
been obtained only by numerical integration, however.
Moreover, in his recent work on response functions,
Goodman’ has used a direct summation over many
normal modes to fill a gap between approximations
which apply for early and for late times. The purpose

1 1. Waller, Ann. Physik 83, 153 (1927).

2 W. A. Bowers and H. B, Rosenstock, J. Chem. Phys. 18, 1056
(1950).

3 H. B. Rosenstock and G. F. Newell, J. Chem. Phys. 21, 1607
(1953).

4 P. Mazur and E. Montroll, J. Math. Phys. 1, 70 (1960).

5 R. J. Rubin, J. Math. Phys. 1, 309 (1960); 2, 373 (1961); Phys.
Rev. 131, 964 (1963).

¢ F. 0. Goodman, J. Phys. Chem. Solids 23, 1269 (1962).

? F. 0. Goodman, Surface Sci. 3, 386 (1965).

8 A. A. Maradudin, E. W, Montroll, and G. H. Weiss, Theory of
Lattice Dynamics in the Harmonic Approximation (Academic Press
Inc., New York, 1963).

of the present paper is to show that, for the case of
equal force constants, rather straightforward ex-
tensions of existing approximations remove a good
deal of the need for numerical work. Section 2 provides
a description of the spectrum of squared frequency
which makes it easy to calculate the density of normal
modes at any frequency to about one part in a thou-
sand. This has a double interest since the same function
gives the density of states for electrons in a simple
cubic lattice in the tight-binding approximation.?
In Sec. 3 the available asymptotic approximation for
the momentum autocorrelation function at long times
is improved by calculating the terms varying as #~%.

Until Sec. 4, all of our calculations are for an atom
in an infinite lattice. There it is shown that the in-
clusion of the additional terms in the asymptotic
approximation for the autocorrelation function leads
to good agreement with numerical results of Goodman
on the response of a surface atom in a semi-infinite
lattice model.

2. SPECTRUM OF SQUARED FREQUENCY
AND ITS MOMENTS

For this model, the frequency o of a lattice wave
with propagation vector k is independent of polariza-
tion, all three branches of the spectrum satisfying the
relation

w? = (2/m) Y y;(1 — cos k;a). 2.1

Here, m is the mass of a lattice particle, a is the lat-
tice constant, and the quantities y, (with j =1, 2, 3)

? N. F. Mott and H. Jones, Theory of the Properties of Metals and
Alloys (Oxford University Press, London, 1936). Curve (1) of Fig.
38a shows this density of states, but with the area under the curve
equal to 2 (rather than to 1), corresponding to 2 electron states per
atom of the lattice. The first evaluation of the function in connection
with lattice dynamics appears to be that of Bowers and Rosenstock.
(See Fig. 6 of Ref. 2.)
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are central and noncentral force constants. We state
basic equations for general values of the force con-
stants, but our calculations deal only with the case of
equal force constants,

Letting x = (w/wyr)?, where wy is the maximum
lattice frequency, the spectrum of squared frequency
may be expressed as a single integral®

G(x) = (6/~n)J;wcos 3n(1 — 2x)
x Jo(AmJ oA o(Agm) dn,  (2.2)

where A; = 3y,/(y, + ¥ + 75) and J, is the zero-
order Bessel function of the first kind. As this expres-
sion makes clear, the spectrum satisfies G(x) =
G(1 — x). It is also very helpful to have the Laplace
transform of the spectrum

Jwexp (—nx)G(x) dx
= exp (—n/2)1(A1/6)1o(A:n/6)I(A31/6),

where I, is the zero-order modified Bessel function.
A careful discussion of this equation has been given
by Peretti.!°

2.3)

Spectrum for Equal Force Constants

For this case the most interesting features of G(x)
are infinities in slope at x = § and x = %. To con-
centrate attention on these points we write (2.2) in the
form

G(x) = G}) — (6/=)
x f “lcos g — cos 3y(l — 2x)1730n) dn.  (2.4)

When x is near } or %, heavy contributions to the
integral are to be expected from the region of large .
This suggests that a good approximation can be ob-
tained by introducing the asymptotic expansion

s = (2 [eos (1= )
+ (i) sin (n _ ;—’) 4 ] 2.5)

Using two terms of J3(%) in the integral leads to no
convergence problems at 5 = 0 and, without addi-
tional approximations, yields
G(x) = G(}) — (18/7®)(1 — 3x)t + (3/27)
X (42 = 5)(1 = 3x) + @/=)(1 — 304,
x<3% (26)

10 3, Peretti, J. Phys. Chem. Solids 12, 216 (1960).
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TasLE I. Coefficients in Egs. (2.9) and (2.11).

j C; d/ j C; d;

1 3 % 7 102.13 0.90
2 32 w5 8 248.87 2.20
3 2 e 9 622.4 5.5
4 ZCH #%6 10 1588 13.7
5 19.189 0.1861 11 4119 343
6 43.324 0.382 12 10826 87

and

G(x) = G3) — (3/7)(3 + 4/2) + (3V3[m
x X2 + 3x) + (1 — x5 — 3x)],
1I<x<3§ 27

Equation (2.6) should be good for the region just
below x = %; an explicit expression for the region
just beyond x = § may be obtained by replacing
x by (1 — x). The actual range of usefulness of these
expressions is seen below. It turns out that (2.7) is a
good approximation throughout the indicated range,
not just very near the end points, as might have been
imagined.

We now turn to the region near x = 0. An asymp-
totic expansion in ascending powers of x may be
obtained from the Laplace transform

L "exp (—)G(x) dx = exp (—/DL@/6). (2.8)

Using the asymptotic series for the modified Bessel
function, and recognizing that for large # the major
contributions to the Laplace integral come from small
x, one obtains

G(x) = (6/m™)(B3x)(1 + 1 + cx® + cax® + « - 2),
2.9
where the coefficients ¢; are given through j = 12 in
Table I. For large j only a few terms in the cube of the

Bessel function are important, and one may obtain the
asymptotic approximation

) ( 1 9 357 )
=337——-—-1+—+—-+__ “e
ST gy Ty e e
+1
- 371} (1 _ 1 145 2933 i ) 2.10)
27t 8  128% 1024)3

This representation of G(x) is well known, but as it
stands its range of usefulness is small. In seeking
improvement we may take into account Eq. (2.6)
which shows that as x approaches }, the derivative
G'(x) diverges as 27/#%(1 — 3x)%. The expression

G(x) = (6/m)(BxP[4(1 — dix — dpx® — - - )
—3(1 — 301 (211)
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TasLE II. Comparison of approximations for G(x).

From Eq. (2.11) From Eq. (2.6)

Terms through ~ Terms through with
x j=5 j=12 G} =1.737
0.20 0.6881 0.6880 0.70
0.25 0.8858 0.8853 0.888
0.30 1.182 1.180 1.180
0.31 1.270 1.267 1.267
0.32 1.383 1.380 1.379
3 1.745 1.740 1.737

incorporates this feature and may be made consistent
with (2.9) by proper choice of the coefficients d;.
Values of these new coefficients through j = 12 are
included in Table I. For j > 5, the ratio ¢,/d; exceeds
100, promising a considerable increase in the range of
x for which calculations can be made easily. For large
J» one may obtain the approximation

37’+1 (1 15

d. =
167T%j%

7

To investigate the accuracy of the above approxima-
tions we first observe that G(3) has the value!!

6 (%) L " Sy dy = [1“(%)21‘(%)]2 - 1.7(122 .1 3

Secondly, Eq. (2.7) shows that as x decreases from §,
G(x) increases very slowly, reaching 1.712 + 0.025 =
1.737 at x = 4. With this value available, Eqgs. (2.6)
and (2.11) can be compared in the region below x = §.
According to Table II, the expressions agree very well
close to x = 0.30. We have, in fact, arrived at approxi-
mations which make it very easy to compute G(x) at
any point to about one part in a thousand. It appears
that for x < 0.25, Eq. (2.11) should be used, while
for x very near }, Eq. (2.6) is needed.

Moments of the Spectrum

Knowledge of the Laplace transform of G(x)
provides a highly convenient way of generating the
moments

1
U; =f x'G(x) dx. (2.14)
0
Expanding both sides of (2.8) in ascending powers of
7 and identifying corresponding coefficients yields the
values through j = 14 which are listed in Table III.

11Y. L. Luke, Integrals of Bessel Functions (McGraw-Hill Book
Co., Inc., New York, 1962). Formula (8) on p. 333 gives twice the
quantity which we use. A suspected error in the statement of the
formula was confirmed by evaluating the integral of the cube of

J30p) = @lemt sin 4,

For large j, the major contribution to (2.14) comes
from x near unity. Using this fact along with (2.9), and
recalling G(x) = G(1 — x), one obtains the asymp-
totic relation

# 3
My = (‘3_) (1 + -+
j 8j

For j = 15, this approximation is correct to about
4 parts in a thousand. This is useful since, in some
applications, the higher moments do not need to be
known to great precision.

313
12852

13,257
1024;°

+- ) (2.15)

3. CLASSICAL MOMENTUM AUTOCORRELA-
TION FUNCTION

The function of interest is

2r
o(7) = (87 J j j cos xir do, d6, db,, (3.1)
0

where 7 = w1 is the dimensionless time variable used
by Mazur and Montroll,* and 0 is the product of the
wave vector k and the lattice constant. The function
may be interpreted as the momentum of a particle at
time =, given an initial state in which this particle had
unit momentum in its equilibrium position and all
other particles were at rest in equilibrium positions.
Integration over a surface of constant frequency
yields a single integral involving the frequency spec-
trum

1
o(r) = f G(x) cos x*r dx. (3.2)
0
Expansion of the cosine gives
(=Y
=3y 33
P=20n (3.3)

where the quantities u; are the moments defined in
(2.14). This expression is very suitable for small = and
can be used without too much difficulty up to = = 10.
Beyond this point one would like to depend upon the
approximations suitable for large = which are now
discussed.

TasLE ITII. Moments of the spectrum of squared frequency.

J i J s

1 1/2 8 0.04558853
2 7/24 9 0.03777040
3 3/16 10 0.03190726
4 149/1152 11 0.0273970
5 217/2304 12 0.0238498
6 17813/(12)° 13 0.0210092
7 28031/2(12)* 14 0.0186861
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Introducing y = x¥ = wfwy, gives

1

p= L 8(y) cos yr dy, 34
where g(y) = 2yG(y?). According to the theory of
Fourier transforms the behavior of p at large 7 is
determined by the form of g(y) near its singularities
(infinities in derivatives) at the three points 34,
($)}, and 1. Lighthill'2 discusses this theory and, in his
Theorem 19 (p. 52) and Table I (p. 43), provides
specific guidance in the calculation of asymptotic
terms.

When the brief calculations are carried through for
the singularity at y = ()}, the corresponding con-
tribution to p is

6\
—_ 3i 2
P1 (m')
19\/5 . T 7

X [cos (\-% + 727) o sin (ﬁ + Z)]
3.5

Equation (2.6) has been used, the important terms
being those involving (1 — 3x)* and (1 — 3x)%. Since
G(x) = G(1 — x), the relation

g() =2yG(1 — ¥

can be applied in working with the singularities at
(3)* and 1. Just beyond (%)}, the relevant terms in g(y)
are —(36y/7?)(3y? — 2)t and (6y/=?)(3y2 — 2). These
lead to

pme (o ()
rarl e (- +)] oo

A similar use of (2.9) for the singularity at y =1
yields

() G 00}

The sum p = p; + p; + p3 gives an asymptotic
expansion which is correct through terms of order
7-%, The main terms (those involving +—¥) were
calculated earlier by Mazur and Montroll working
with an integral in wave-vector space and similar
calculations have been made by Goodman. The
additional terms, however, are new.

12 M. J. Lighthill, Fourier Analysis and Generalised Functions
(Cambridge University Press, Cambridge, England, 1958).
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TasBLE IV, Values of p(r) at some intermediate times.

From asymptotic approximation

T From Eq. (3.3)  Main terms only All terms
10 0.181 0.208 0.199
11 ~0.0655 —0.043 —0.072
12 -0.199 —0.179 —0.215
13 —0.180 —0.165 —0.193

Table IV lists some values of p(r) for the range
7 = 10 to = = 13. The first column follows from Eq.
(3.3), enough terms being used to yield accurately the
number of places stated. The later columns are based
on the asymptotic approximation p = p; + p, + ps.
It is seen that the terms of order =% improve the
approximation a little, and that the final results are
correct to about 109. In this range of 7, the asymp-
totic approximation is of help, but it is not yet entirely
satisfactory. In the next section, comparisons are
made involving a related function, Goodman’s
X4(7), at a substantially later time. There the 7%
terms improve the approximation greatly and agree-
ment to 19 or better is obtained.

4. EVALUATION OF GOODMAN’S FUNCTION
Xa(T’)

Goodman’s calculations on the dynamics of the
lattice model under discussion were part of his study
of the theory of thermal accommodation coefficients.
For this reason he was particularly interested in a
function X, which gives the displacement of a surface
atom in a three-dimensional semi-infinite lattice at
some time, the initial disturbance having been a unit
velocity of this atom perpendicular to the lattice
surface. He used a dimensionless time variable (which
we denote by 7') which is related to the variable = of
Mazur and Montroll* by +' = 7/(3). In this notation
the momentum autocorrelation function of a surface
atom is dX;/d7’.

Goodman® developed a relationship between the
autocorrelation function of a surface atom in the semi-
infinite model and that for an atom deep in the interior.
In the notation of the present paper, this relationship
becomes

aX, _ 2]1(1 — X)G(x) cos (3x) dx.  (4.1)
dr’ 0

This quantity may be obtained from our p(+) by
calculating 2(p + d?p[dr?) and replacing = by (3)}+'.
An integration then gives X3(7’). At early times,

Xs(7) =7 — (57'%24) + (+'5/64) — - -+, (4.2)

in agreement with Goodman. For late times, use of
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(3.5), (3.6), and (3.7) gives

Xy() =2 (ﬁ)lg

X {[2sin (-r’ + z) — 2t cos (\/f‘r’ + f):l

1
- l,[%cos (r’ + g) + &1(2—)

X 7s-in (\/5 v+ 727)
— (27)* cos (\/3 T + ;—T)i“

The terms decreasing as ="~ agree with those given by
Goodman in Eq. (5.22) of Ref. 6; the terms involving
7'~ are new.

For a range of intermediate times, Goodman felt
that neither of the approximations available to him
was adequate. Accordingly, he later (see Ref. 7)
carried out calculations of X,(") by a direct summa-
tion over a large number of normal modes. This is
equivalent to a numerical evaluation of the integral

Xyr) = ij—a f ﬁ(sx)—*a — )

x sin (3x)% a6, do, do,, (4.4)

which follows from our Eq. (3.1). As a check of
accuracy, Goodman actually made two calculations in
which the summations were carried over M*® = 1000
and M3 = 1728 normal modes. The accompanying
Table V compares values from Table II of Ref. 7 with

(4.3)

TABLE V. Values of Goodman’s function X,(7).

From Eq. (4.3)

Main terms Goodman’s values
T only All terms M =10 M=12
20 0.0307 0.0324 0.032099 0.032099
25 0.00975 0.0120 0.011942 0.011943
30 —0.01257 —0.01235 —0.012409 —0.012293
35 —0.0151 —0.0150 —0.018594 —0.015004
40 —0.0029 —0.0030 —0.027946 —0.003576

values computed from our Eq. (4.3). For 7" = 20,
25, and 30,agreement to 19; or better is obtained. For
7 =35 and 40, discrepancies between results for
M = 10 and M = 12 indicate a failure of Goodman’s
method, as he has pointed out. This is expected at
sufficiently long times since calculations using a
limited number of modes cannot reproduce accurately
the effects of the singular points in the frequency
spectrum. It is interesting to note that at " = 35 the
result for M = 12 is still good.
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A finite cylindrical antenna which is imbedded in a concentric dielectric rod has been investigated by
employing a rigorous formulation. When the antenna is relatively short, a numerical method is used;
when the antenna is long, the Wiener-Hopf technique is applied. In both cases the input admittance and
the current distribution are obtained. It is found that the input conductances are larger than for the
corresponding free-space antennas, the field patterns tend to be more broadside and, as the antenna gets
longer and longer, the locus of the input admittance becomes a circle instead of converging to one point
as it does for a bare cylindrical antenna. The first method is applicable regardiess of the thickness of the
antenna and the dielectric rod; the second method can be applied only to a sufficiently long antenna.
The minimum length is determined by the thickness of the dielectric rod. This study is limited to thin
antenna in rather thick dielectric cylinders. However, the dielectric rod is still not thick enough to

support a transverse magnetic (T.M.) mode.

I. INTRODUCTION

In a cylindrical dielectric-coated antenna with in-
finite length,! the current can be separated into two
parts: the radiation current which is associated with
the radiation field, and the transmission current which
is associated with the Goubau surface wave. The
finite dielectric-coated antenna was first discussed
by Wu? who showed that, when both the coating and
the antenna itself are very thin, the current distribu-
tion differs very little from that of a thin bare dipole in
free space and can be expressed in a form equivalent
to that for a thin dipole with slightly modified radius
and with a surface impedance. As the dielectric
coating becomes thicker and thicker, changes are to
be expected. For a very thick dielectric rod, the
current in the antenna should behave more or less
like that in a homogeneous infinite dielectric medium.
However, due to the complexity of Green’s function,
an exact solution is very difficult to obtain.

In this study, an exact integral equation for the
current in a finite dipole in an infinitely long dielectric
rod was formulated and solved by a numerical method.

The accuracy depends on the number of points taken.

and the accumulated round-off error. For a reason-
able number of points, the results show excellent
agreement with experiments; they are consistent with
the prediction made from the infinite antenna. That is,
when the dielectric layer is thick the current is domi-
nated by the transmission current.! In principle, the
method can be applied to an antenna of arbitrary
length. However, due to the restricted number of
storage locations available in a computer, it is limited

* This work was supported in part by the Office of Naval Re-
search under Contract Nonr-1866 (32), and by the Division of
Engineering and Applied Physics, Harvard University.

1 C. Y. Ting, Radio Sci. 2, 325 (1967).

2 T, T. Wu, J. Math. Phys. 2, 550 (1961).

to the relatively short dielectric-coated cylindrical
antenna. To overcome this difficulty a new method is
developed for a long dielectric-coated cylindrical
antenna. This makes use of the fact! that the radiation
current decays very quickly and can be neglected at the
end of a long dielectric-coated antenna when compared
with the transmission current. If the reflection
coefficient of the transmission current is then found,
the characteristics of the antenna can be determined.

II. FORMULATION OF THE INTEGRAL
EQUATION

One way to formulate the integral equation for the
current in a finite antenna is to derive Green’s function
first. Suppose there is a ring delta-function current
source with radius a, oriented in the z direction inside
a concentric dielectric rod with radius 4 as shown in
Fig. 1(a). Rotational symmetry is assumed, and only

- >

z
Zz T Mo€t|  Ho€o
SB

Z=h
/R
-@}/
L1

8 -t 8
z=of 1= { ‘ z=oxé‘V ‘Z'S‘*

Ho€ | MHo€o

r

!

|

I I|T (I

—= 2i0 h— — 2lg |=
I i
2|b

2/b o~
\/‘ Z=—h&'_j

(@ \(5/

F1G. 1. Schematic diagrams of a ring delta source (a) and a finitg
dipole (b) in an infinite dielectric rod.
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the z component of the vector potential, G = G3, is
excited. The vector potential G in the dielectric medium
and in free space resulting from this delta-function
source satisfies the following wave equations:

12/ 0G 0°G 2 o
19,9 4+ 99 L ke = — 0 s60r — a),
rar(r ar) t 0z° +ia 2ar (@) = a)

~ 0<r<b, (1)
18/ oG 9°G
~=|r— — 4+ kG=0 b , 2
rar(rar)+azz+ d <r<e, @

where k; = w(uoe)?, ko = o(ugeo)t, po and e, are the
free-space permeability and dielectric constant, and
€, = €,¢, is the dielectric constant in the dielectric
medium. The time dependence is e=***. Let the Fourier
transforms of (1) and (2) be taken according to the
relations

Flk) = f_ * F(z)e™ dz, (3a)

1 © —ikz
F(z) = 7 f_w Fkye ™ dk. (3b)

The Fourier-transformed solutions of (1) and (2) are

given by
Gy(k, r) = CiJy(én), 0<r<a, 4
Gy(k, r) = Colo(ér) + G Yy(ér), a<r<b, (5

Gs(ka r) = CHy(¢r), 6

where & = (k2 — k®t, ¢ = (k2 — k%% By means of
the boundary conditions: (a) tangential electric field
continuous at r = a, (b) tangential magnetic field
discontinuous at r = a by the delta-function current
source, (c) tangential electric field continuous at
r = b, and (d) tangential magnetic field continuous at
r = b, the constants C;, C,, C;, and C, can be
evaluated. Green’s function in each region may also
be found. In region I, where 0 < r < a, it is

b<r< o,

Gilor) = — oo )

X {le,pYi(ED)H" ($b) — EYy(EDYH{ ($b)Wo(8a)

+ [ET(ED)H"($b) — €,$J1(ED)HL ($b)]Yy(£a)}.

7

In region II, where a < r < b, it is O
Gz(k, r) —_ ‘uO"O(Ea)

4D(k)

X {le,p (EDH($b) — EYo(ELYHV ($b)Mo(ET)

+ [EJo(ED)H"($b) — €, 3T (ED)H " ($b)] Yo(EP)}.

®
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In region III, where b < r < oo, it is

_ o o(Ea)H, ,‘,”(qu )
Gyk, r) = gDk ®
where

D(k) = EJo(D)HIV($b) — €, $J1(ED)H ($b). (10)

In order to invert (8) from the k domain into the real
z domain, the singularities of (8) on the complex k
plane must be carefully investigated. The only two
branch points are at k = +k,. Points at k = +k,
are not branch points, but are two simple poles. This
can be recognized easily by employing a small-
argument expansion for the Bessel functions with
arguments a and £b in (8). The leading term is

lim Gy(k, a)

k=l
= lim :u0€r¢H|()l)(¢b)
ke, wh(k3 ~ KD)[2HT($b) — €, pbHG ($b)]

(1

The numerator of (8) is the characteristic equation of
a Goubau line; therefore, (8) has two zeros which are
designated at +k,. Other poles can be found by
locating the zeros of the denominator. Note that
D(k) = 0 is the characteristic equation of a dielectric
waveguide. If the branch cuts are drawn in the manner
shown in Fig. 2 and the same sequence of steps is
followed that is described in two papers,':? similar
conclusions can be drawn. They are:

(a) There is no pole on the real axis in the range
ky < |kl < o0;

3 C.Y. Ting, ‘A Theoretical Study of Dielectric-Coated Cylindri-
cal Antenna,” Cruft TR 506, Harvard University, 1966.
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(b) There is no pole on the real axis in the range
k, < |k| < k, for (K3 — kﬁ)*b < 2.405;

(c) There is no pole on either side of the branch cuts;

(d) There is no pole in the domain of very large
|k| including infinite;

Gy(z,0) = 2—1—77 f ok, a)e="* dk

CHUNG-YU TING

(¢) By taking the limit as k; — k,, it can be proved
that there is no pole on the finite complex k plane.

With this information, and for z > 0, the Fourier-
inverse contour can be closed in the lower half-plane
and Green’s function expressed as follows:

poe(k3 — kﬁ)ﬁKo[(kﬁ — kg)ib]eikﬂq

2mbk, (2K, [(K2 — k3] + (k3 — kDEBK,[(KE — K]}

o lo(Qa)Pe'™* dx

Ko
" IL b {[QJ(Qb)J1(Pb) — €. PIy(QB)I(PH)I + [QJ(Qb)Y,(Pb) — €,PJ(Qb)Y(Pb)[*}

poelTo(Va)'e ™ dy

+L PO VIV B)IL(Ub) — UI(VB)I(UBE + [VI(Vb)Y(Ub) — e UI(Vb)Yy(UB)}’

where
Q=K -3, P=(kE— ",

The first terrn comes from the residue at —k;; the
second and the third terms come from the branch cut,
as shown in Fig. 2.

Once the Green’s function is known, it is possible to
proceed to analyze the finite antenna. As shown in
Fig. 1(b), a finite tubular dipole is imbedded in an
infinite dielectric rod with a delta generator at z = 0.
From the condition that the tangential electric field
vanish on the surface of the antenna, Hallen’s integral
equation is obtained. It is

A
4m A, =f IZx(z — 2 dZ’
o —h

= ﬂl’[c cos kyz + L sin k, lzl], (13)
& 2

where {, = (uo/ey)t, C is a constant to be determined
by the condition that the current vanish at z = +h,
and '

Kz —2) =2 | Gulk, )™ dik

Ho J—
4= ,

= — Gy(z — 7/, a). (14)
Ho

The contour C of the Fourier-inverse integration
can go either above —k, and below k; as shown in
Fig. 2, or the other way around. The answer is the
same, This has been discussed in an earlier paper.?

II. A NUMERICAL METHOD

Equation (13) is an exact integral equation for the
model shown in Fig. 1(b). When k6 < 1, the small-
argument expansion of the Bessel functions can be

(12)

U=+, V=K + )9

used to approximate the kernel. This is discussed by
Wu,? who predicted that the current distribution when
both the antenna and the coating are very thin should
be close to that in a free-space dipole. On the other
hand, it is interesting to know the change in the
current distribution when the coating gets thicker.
Since no simple approximation can be made for the
kernel, it is difficult to obtain even an approximate
solution. The method employed here is a numerical
one given by Young.? In his two papers, first integrals
of the product of two functions f(x) and g(x) are
expressed in the form

b n
[roemax=Snsey+r a9
where x;, x5, *, x, are the n abscissas with which
are associated weights v,, 5, ', %,, and Ris a
correction term. It has been shown that by expanding
J(x) in a Taylor’s series about the midpoint of the
interval between g and b and by equally spacing the n
abscissas, i.e., X, — X, 1 =X, 43— Xpg=""
Xy — X; = t, the »’s can be expressed in a matrix
form. For instance, for n = 3, they are

‘=

oy 0 -1  1im
Va =5 2 0 ~2i|u|, (16)
Ya 0 1 1

where

b
b= f (x — x)'g(x) dx, s=0,1,2.

4 Andrew Young, Proc. Roy. Soc. (London) A224, 552 (1954).
5 Andrew Young, Proc. Roy. Soc. (London) A224, 561 (1954).
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The remainder term R is proportional to the fourth
derivative of f(x) within the interval. The next step is
to apply the approximate product integration (15)
to the numerical solution of integral equations. To
begin with, because of the symmetry of the current
I(z) = I(—z), Eq. (13) may be rewritten as

f ")z — 2) + Kz + 2] dz’

_ = (c cos k,z + 5 sin k, lzl) an

1
The interval (0, ) may be divided into / subintervals.
Within each subinterval, an approximation of the
type (15) is used. That is, by expanding the current
I(z) in each subinterval into a quadratic form (or
n = 3) about the midpoint of the subinterval, the
right-hand side of (17) becomes

fhl(z’)[x(z —2z)+ k(z + 2)] dz’
- U; +J;t +J;t toot 2<z—1n}
X I(2)[x(z — 2') + w(z + 2')] dz’
=3 @I - 2]

Yi@I2 — D] + vi(2I(2j1)},  (18)
where ¢ = h/2l. By defining
pa(mt) = tnl-x jz'”‘lk(mt - z')dz’
= (=" (—=m), (19

withn=1,2,3,and m=0,1,---, 4/ — 1, all the
»’s in (18) can be expressed in terms of the u’s.
According to the relation (16), they are

Y1(2) = H{—palz — (2 — Dt} + pofz + (2 — D)
+ pslz — (2f — Dt} + pslz + (2 — D]},
(20a)
vi2) = wlz — (2 — D] + plz + 2 — 1))

— pslz — (2 — Dt} — polz + (& — 1)),
(20b)
74(@ = Hualz — 2 — D] — pslz + (2 — Dt]
+ palz — (2 — D] + polz + (25 — Del}-
(20¢)
Now let z = mt in (17) together with (18), and let m
change from 0 to 2/. In this manner a set of 2/ + 1
linear equations are generated with 2/ 4+ 1 unknowns.

Since the current vanishes at z = 2Jf, there are only
2l unknowns for the current plus an unknown constant
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C. In matrix notation,
[4l{1] = [G], 21

where [I] and [G] are 2/ 4+ 1 by 1 column matrices.
Their transposed forms are

T = [1(0), 1(1), 121), - - - 1(21t - 0,Cl, (22
[G]® = [0, sin (ky?), sin (2ky0), - - +, sin 21k, 1)), (23)
[4] is a 2]+ 1 by 2/+ 1 square matrix whose

elements 4, are given by
g=1 Ay1 = 7i(pD), (24a)
g = evennumber: A, , = y33(pt) + y{*(pt),
‘(24b)
g = odd number: Ay =y (pr), (24c)
q=2l+1: Ay 41 = (i47[) cos (pky1).
(24d)

The y’s are given by (20); they are all complex quan-
tities. If the square matrix [A] is inverted, the numeri-
cal value of the current and constant C are immediately
obtained. Thus,

[7] = [4]7'[G]. (25)

It is noted that all of the constants u given by (19)
are in double-integral form. By interchanging the order
of integration, one of them can be carried out easily
and the other is left for the computer. Explicit for-
mulas for the u’s can be found in the appendix of
Ting’s paper.?

IV. NUMERICAL RESULTS

Computations have been made with an IBM 7094
computer. Since many integrations of Bessel functions
are involved in generating the constants x and then the
matrix elements 4, , a considerable length of time is
required in order to achieve one curve of the current
distribution. Fortunately, a way has been found
which can save much computing time and give a
number of curves simultaneously. Beginning with the
longest antenna to be investigated, the length £ is
divided into / subdivisions as described before, and
the 2/ + 1 by 2/ + 1 matrix [A4] is formed. Then, for
shorter antennas with length h — (h/)n, n=1,
2,++-,1-21, the matrix elements 4, in each case
are precnsely the same as before except in the last
column, which should always retain cosine terms.
The only significant change is that the order of the
matrix shrinks by two each time n is increased by 1.
Consequently, once the 2/ 4+ 1 by 2/ 4 1 matrix is
formed by redefining the last column each time, the
current distributions for / different lengths are obtained
almost simultaneously.
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FiG. 6. Theoretical input ad-
mittance ¢, = 3.0, ka2 = 0.04 and
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by=4.0
b/q = 3.75 ( Experiment)

experimental input admittance
€, = 3.2, kya = 0.04.
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Some typical results have been obtained for ¢, =
3.00, kea=0.04, koh =3w/2, [ =24, and three
different thicknesses of the dielectric coating, namely,
bla = 2, 4, and 8. For each case the current distri-
butions for 24 different lengths have been obtained,
of which only k¢h = 3w, 7, 4w are shown in Figs.
3-5. Also shown in Figs. 3 and 4 are the experimental
curves by Lamensdorf.® They provide an excellent

® The experimental data are obtained from D. Lamensdorf, who
used a dielectric sleeve which was much longer than the antenna
itself, and in close contact with it. Experimental results show that

the length of the sleeve is not important, so long as it is much longer
than the antenna. (See Ref. 9.)

Theoretical Curve of Input Conductance

e e ——e Theoretical Curve of Input Susceptance

a & a aExperimental Points of Input Conductance by Lamensdorf

e o ¢ s Expenmental Points of Input Susceptance Without End Correction &y Lamensdorf

check on the theory. Note that when the antenna
becomes longer, beautiful standing waves are formed
along them as shown in Fig. 5. The wavelengths are
close to the surface wavelength, especially when b/a is
as large as predicted in Ting’s paper.!

Another interesting part of the results is the input
admittance. Since calculations are based upon the
assumption that the voltage across the delta generator
is 1, the real part of the current at z = 0 is the input
conductance, and the imaginary part at z = 0 is the
input susceptance. Figure 6 shows the curves of the
input admittances as the length of the antenna changes.



488

Experimental points by Lamensdorf® are superimposed
on them. It is noted that the input conductances agree
very well, but not the input susceptances. The reason
is simple. Since a delta generator atz = 0 was assumed,
the input susceptances should theoretically be infinite
at z = 0. Therefore, the more points that are taken in
the calculation of the current distribution, the higher
the input susceptance is. Nevertheless, the general
shape of the input susceptance curve, obtained in the
manner previously described, is still good. If one point
is calibrated the rest are known.

Comparisons with free-space dipoles’ are also
interesting. In general, the input conductances are
larger for dielectric-coated antennas and the input
susceptances are more inductive. This is because the
antenna is effectively thicker in the dielectric rod than
in free space. The resonant and antiresonant lengths
are shorter for diclectric-coated antennas. In other
words, the effective length of an antenna in a dielectric
rod is greater than that in free space as was anticipated
before performing any calculations.

There is an interesting characteristic for the case
bja = 8. Owing to the interaction of the two kinds of
standing wave, i.e., the radiation and the transmission
formed along the antenna, the second resonant peak
is greater than the first resonant peak. This has also
been verified by experiment.

V. FIELD PATTERNS

Once the current is known, the far-field pattern can
be calculated easily. The transformed vector potential
in region III, Gy(k, r), resulting from a ring delta
source,is given by (9), so that the § component of the
magnetic field in this region resulting from this ring
delta source can be expressed as follows:

_ 9Gyk, 1) _ &puodo(E)HT($7)
or 2nbD(k)

The actual magnetic field due to this ring delta source

(26)

2\/3 ftJo(Ea)

F(0) =

where t = hf2] as before and
= —m()) + ms(), ¥4 = 2u.()) — 2u()),
= p5(j) + #s(J);

() = o {sin (2jw) — sin [(2j — 2)w]},

7 R. W. P. King, The Theory of Linear Antenna (Harvard Univer-
sity Press, Cambridge, Mass., 1956).

(33)
(34a)

CHUNG-YU TING

is the inverse Fourier transform of (26). By superposi-
tion, the total magnetic field B,, due to current in the
whole antenna is

h
By, = f I(z') dz’
—n

k=0

It is now convenient to change to spherical coordi-
nates (R, ®, ®), with z = Rcos®, r = Rsin ® in
(27). Then, as R — o, (27) becomes

ikz’ *2.’7
ey [ e

O(Ea)H(l)(qsr)e—zk(z—z ) dk. (27)

lim By, = lim

R—w R-w

x ( 2 )*eiR(n#sin ®—kcos ©) dk. (28)
7¢R sin @

The method of steepest descents applies. The evalua-

tion of the integral (28) at the saddle point k =

—k,y cos O gives
tkoR
lim Bse — l: El‘ojo(éa)] f I(Z/)e—ikoZ’ cos @ dzl’
27R D(k) - 29)

k=00
where the square bracket is evaluated at &k =
—k, cos ©. The Poynting vector in the far field is, by
definition,

= (o) Es X BF = 2us(proso) 17 1Bosl®, (30
if the field factor is defined as (4w%k2S)} which can be
expressed as follows:

F(®) = (415 mR/u,) | By|. 31)

To use the numerical solution to calculate the field
factor, use is again made of the approximate method
described in Sec. III of dividing the antenna into / sub-
divisions (same number as before). Within each
subdivision the current is approximated by a quadratic
form, and the integral involved in (29) can be put in
the form (18). The final result is

w[EbJ(ED)HT($D) — €, $bJy(ED)H"($D)] L=-k., 008 ©

— 20) + pIQ2jt — t) + yI2jn] |, (32)
po(j) = w*{cos 2jw) + w sin (2jw)
— cos [(2j — 2)w] + wsin [(2j — w]}, (34b)

Us(J) = 0™*{2w cos (2jw)

+ (w0® — 2) sin (2jw) + 2w cos [(2j — 2)w]
— (0® — 2) sin [(2j — 2)w]}, (34¢)
o = tky cos ©. (35)
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FiG. 7. Field patterns €, = 3.0, koa = 0.04, koh = $m.

The use of the numerical value of I(m?),m = 0,1, -- -,
21, obtained from Sec. IV, in Eq. (32) yields the field
pattern.

It is interesting to know the contribution from the
conduction current on the conducting tube and the
contribution from the polarization in the dielectric
cylinder. The latter is excluded if the free-space
Green’s function is used; the far field can be expressed
as

—iugk, sin @e*ok

4R

By, (R — ) ~

R
xf I(Zf)e—z’koz' cos @ dz’ (36)

—h
and the field factor is
F(0) = /15 kot sin ©

X Zl[?fl@jt — 20 + piI2jt — 1) + $I2j0] |
(37
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Numerical calculations have been carried out with
the above two methods for koh = §m and bja = 2, 4,
8. Results are shown graphically in Fig. 7. The study
of these curves shows that the field patterns obtained
from (32) and (37) have the same shape but that their
magnitudes differ somewhat, depending on the
thickness of the dielectric cylinder. The field pattern
of the dielectric-coated antenna has greater broadside
characteristics than that of the free-space dipole, and
this property becomes more prominent as the dielectric
is made thicker. Although a part of the imaginary part
of the current has a reversed sign, there is no minor
lobe because the antenna is still shorter than one
wavelength in free space. The contribution to the
field by the time-varying polarization in the dielectric
cylinder is very small compared with that by the
current in the antenna itself [the difference between
(32) and (37)], and this difference is roughly pro-
portional to the thickness of the dielectric layer. If the
dielectric layer is not extremely thick, as in cases
previously discussed, the contribution by the polari-
zation can be neglected for engineering purposes.

VI. LONG DIELECTRIC-COATED CYLINDRICAL
ANTENNA

As the antenna gets longer, a larger computer is
needed to solve the problem numerically and, also,
the computing time becomes considerably longer.
Fortunately, a new method has been developed with
which the problem can be solved much more easily.
It was shown in Ting’s paper! that, in an infinite
cylindrical antenna with a reasonably thick dielectric
coating, the radiation current excited by a delta
generator is much smaller than the transmission
current except when very close to the generator. Also,
itsrate of decay is greater, initially, than an exponential
rate; it becomes 1/2z% asymptotically. Therefore, if the
antenna is long enough so that the radiation current
can be neglected at the ends and if the reflection
coefficient of the transmission current can be found,
then the problem is solved.

In order to find the reflection coefficient of the
transmission current, a model of Fig. 8 is considered.

PERFECT CONDUCTING Z=0
TUBE

eiksZ 1

20\2

€ ko
ég-}“'o

FIG. 8. A schematic diagram of a semi-infinite perfectly conducting
tube in an infinite dielectric cylinder.
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A semi-infinite perfectly conducting tube terminated
at z=0 and imbedded in an infinite concentric
dielectric cylinder is used. Again the conducting tube
has the radius a, and the dielectric cylinder has the
radius b and the dielectric constant ¢;. A Wiener—
Hopf method similar to the work of Levine and
Schwinger® is used. Assume there is an incident
transmission current e+ traveling from z = — o0
toward z = oo, where k, is the Goubau surface
wavenumber defined in the same manner as before.
After the reflection of the incident current at z = 0,
the scattered current can be expressed as follows:

Re™* 4 g(z), z2L0,
I(Z) = {_eik.z z 2 0

where R is the reflection coefficient of the transmission
current, g(z) is some unknown function which consists
of the radiation current on the outside, and the attenu-
ated waveguide-mode current on the inside of the tube,
generated by the reflection of the incident transmission
current. Both of these are assumed to suffer rapid
attenuation; note that —e%s* cancels out the incident
current e**%, Since there is no conducting tube on the
side z > 0, there is no conduction current there. The
boundary condition for a vanishing current at z =0
requires R = —[1 + g(0)]. The Fourier transform of
(38) is

I = [i(TjL_kﬁ]ﬁ [ka—k—) + G_(k)]_,
(39)

where the plus and minus subscripts indicate the plus
and minus functions defined by

F(k) = L " F(z) ¢** dz,

(3%)

(40a)

0
F (k) = f F(z) €** dz. (40b)
F, (k) is analytic in the upper half k plane and F_(k) is
analytic in the lower half k plane. They have a common
analytic region which shrinks to the real axis.
The Fourier-transformed Green’s function K(k)
for the z component of the electric field at r = a is

R(k) = (i08[kDGy(k, a), (41)

where G,(k, a) is given by (8). The singularities of
R(k) are the same as in Gy(k, a); this is discussed in
Sec. II. Note that two poles at k = =k, have been
canceled out.

From the boundary condition that requires the
tangential electric field to vanish on the surface of the

8 H. Levine and J. Schwinger, Phys. Rev. 73, 383 (1948).

CHUNG-YU TING

perfect conductor, a Wiener-Hopf-type integral equa-
tion is formulated as follows:

0, z <0,
E(z), z>0,

where E(z) is an unknown function of the tangential
electric field for z > 0. The Fourier transformation of
both sides of (42), with the assumption that E(z) is
Fourier integrable, gives

Lil(z')K(z —2)dz' = { (42)

[eml* [t ol -5
@3)

1/R(k) has two branch points at +k,, two simple
poles at +k,, and an infinite number of simple poles
on the imaginary axis which makes Jy(£a) = 0. Let
1/R(k) be split into a product of a plus and a minus
function as follows:

wo el el

where the two poles at +-k, have been separated out

(44

for simplicity. P, (k), O_(k) are given by

P.(k) = exp [Elﬁ; f “In [(# z__ki/m)] dl}

ImA>0, (45)
-1 f ®1n [(* — KD/ R(D)] }
di |,

J_(K) = exp [2—; e

ImAd<0. (46)
With (44), (43) becomes

k —k, [ R
itk + k)0_(k) = LiQ_(k)

(k — k)G_(k)
0 (k) ]—

_ [fl(k)m(k)] @
k+k, I+
Then, by splitting the first term of (47) into a sum of a
plus and a minus function, one obtains

2k,
itk + k,)Q_(—ks)]—
+ [ R (k — ks)G_(k)]
i0_(k) gk -

- [E+l§kf;fk)]++ [i(k - ki;‘é_ (—k.,)]+' (48)

The left-hand side of (48) is a minus function, the
right-hand side is a plus function; therefore they must
be equal to an entire function. From an investigation
of the asymptotic behavior of the function on the

k — k,
[i(k + k)0_(k)
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right-hand side in (48), it is easy to prove that the
entire function is zero. Since, as [k| — o0, K(k) ~ k,
and K, (k) is an even function of k, so that P (k) =
0_(—k) ~ vk, and E, (k) is no worse than a constant,
the right-hand side of (48) tends to zero. It follows
that
R

=) + G (k)

=1 [ k—k 2k, 0_(k) } 9)
k- ks[i(k+ k) k(k + k)O(=k)]

When the inverse Fourier transforms are taken, the

residue contributions resulting from the simple pole

at k = k, should be equated on both sides of the

equation. This gives

R = —0 (k)0 (—ky), (50)
which is a simple expression of the reflection coefficient
of the transmission current. @_(k,) and §_(—k,) can
be evaluated with (46). After simplification has been
made on (50), a final form is

—2k; f “In [(A* — k9)/ KD)]

0 2=k
where P indicates the principal value. R as given in (51)
can be computed numerically; in general it is a com-
plex quantity.

After R is known, it can be used readily in the
analysis of the finite long antenna shown in Fig. 1(b).
Since the antenna is assumed long, the radiation
current can be neglected at the ends of the antenna,
and both the radiation current and the transmission
current can be considered separately.

The total current is the sum of the radiation current,
the infinite series of the multiply-reflected transmis-
sion currents, and the unknown reflected current
g(z). Mathematically it can be written in the form

eik,z[l + R ei2k,(h—z)] + eik,hg(z . h)
1 — R gi2keh ’ ’

dl} (51)

i

R = —exp[

1(z) = I(z) + G,

(52)
where 1,.(2) is the same as the radiation current of an
infinite cylindrical dielectric-coated antenna, and G,
is its input transmission conductance. Both are given
in Ting’s paper,! and the driving voltage V' is assumed
to be 1. The current-standing-wave ratio is found to
be S =1+ |R|/1 — |R|. Let the input admittance be
defined as the current at point z = 0, which from (52),
is

. . 1 + R
Yo = Gun + 1B = G, + iB, + G, "0,
(53)

where G;,, By, are the input conductance and input
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susceptance of the finite long antenna, and G,, B, are
the input radiation conductance and the input
radiation susceptance of the corresponding infinite
antenna. It is seen from (53) that the locus of the input
admittance is a circle.

If the resonant and antiresonant lengths are defined
respectively at the maximum and minimum of the
input conductance, they are given by

(54

and the maximum and minimum of the input suscep-
h —

tance occur at
1 ( -1 2|R| -1 b)
= ——| COS — tan s B
2k, 1+ |RJ? a

where R = g + ib. The corresponding maximum and
minimum input conductances are G, 4+ G,- S, and
G, + G,/S, respectively.

In the numerical calculation, the input radiation
susceptance of an infinite cylindrical dielectric-coated
antenna B, due to the delta generator is infinite. One
way to avoid this difficulty is to subtract the inside
current from the outside current. Since the same
logarithmic singularity occurs on both inside and
outside surfaces near the driving point, they cancel
when the two currents are subtracted and a finite
value is obtained. This does not necessarily correspond
exactly to the actual value for an infinite antenna with
a certain gap, but it has been checked experimentally
that they have the same order of magnitude.

The numerical values for the three cases G, = 3.0,
bjla=2,4,8, have been calculated. The loci are
shown graphically in Fig. 9. Superimposed on each
circle is the input admittance curve calculated in Sec.
IV for a relatively short antenna, and corrected
(imaginary part) according to Lamensdorf’s experi-
ment.? It is interesting to note that as the length of the
antenna increases, the admittance approaches the
circle of (53). This differs from the bare long dipole
antenna'® for which the admittance ultimately con-
verges to one point.

Typical current distributions, both in magnitude
and phase, have been obtained from (52) for the above
three cases with 7 = 34,. They are shown in Fig. 10,
in which I,(z) is obtained from Ting’s paper.! Since
g(2) is unknown, the dotted lines at the ends are
drawn arbitrarily.

A comparison of the current distribution obtained

(%)

? David Lamensdorf, “An Experimental Investigation of Di-
electric-Coated Antennas,” Cruft SR 13, Harvard University, 1966.

10 Keigo lizuka, R. W. P. King, and Sheila Prasad, Proc. Inst.
Elec. Eng. 110, (Feb. 1963), pp. 303-309.
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FINITE DIELECTRIC-COATED CYLINDRICAL ANTENNA

by (52) with that obtained by numerical methods, can
further confirm the theory. The longest structure
calculated in Sec. IV is h = $4,. For the antenna with
b/a = 8 which has the largest transmission current
and the smallest radiation current among the three
cases, the results are superimposed in Fig. 5. Even
though & = 4, is not really long, the experiment is
not bad except near the end where the theory yields no

answer.
VII. CONCLUSIONS

Two methods have been used in solving the problem
of a finite dielectric-coated dipole antenna. The first is
an entirely numerical method. Because of the limita-
tion of the size of a computer and the computing time,
it is useful only for relatively short antennas. Excellent
results have been obtained when compared with
experimental data. Actually, this method can be used
to solve many kinds of problems that involve finite
cylindrical antennas once the appropriate Green’s
function is known. The second method applies
specifically when the antenna is sufficiently long. In
general, the longer the antenna, the thicker the di-
electric coating; and the higher the dielectric constant,
the more accurate will the results be. The minimum
length required before the theory can be applied
depends on the desired accuracy. As the coating
becomes thinner and thinner, the relative magnitude
of the transmission current decreases, and the mini-
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mum length required becomes greater and greater.
In the limit as the coating goes to zero, the trans-
mission current vanishes and the theory ceases to
exist.

Finally, no matter how complicated the mathe-
matics may be, for engineering purposes a relatively
short antenna with a dielectric coating of reasonable
thickness can be treated simply as a free-space dipole
with a modified wavenumber. The imaginary part of
the current is well represented by a sine term, the real
part by a shifted cosine term; however, the wave-
number is no longer that for free-space but close to
that for the Goubou surface wave. The field pattern
can be calculated with the free-space Green’s function.
In addition, the dielectric cylinder makes the antenna
effectively longer and increases the radiation resistance
of a very short dipole.
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We obtain the real singularities and corresponding discontinuities of a class of multiple integrals over
real contours. Our aim is to give a unified treatment, obtaining, by elementary mathematical methods,
both previously known results and some new generalizations. In a subsequent paper the results areapplied

to unitarity integrals.

1. INTRODUCTION

This paper is the first of a series which has the aim
of showing that unitarity requires the physical ampli-
tudes to have the Landau singularity structure charac-
teristic of perturbation theory. The first step in this
direction is to understand in some detail the singulari-
ties of unitarity integrals that occur for real values of
the external momenta. To do this in full generality,
new analytic machinery is needed. The aim of the
present paper is to provide this machinery by simpli-
fying and generalizing previous analyses of multiple
integrals.1—38

The integrals I(p) we consider are integrals over real
values of k of an integrand possessing d-function
constraints 6(D,(p, k)) and singularities S;(p, k) with
associated increments ie; that prescribe the distortion
of the contour. It is found that the real singular points
of I(p) lie on certain arcs of Landau curves (Theorem
1). We classify three types of singularity mechanism:

(i) Explicit; which corresponds to the constraint
surfaces D having linearly dependent normals at some
point in k-space;

(i) Generative; which corresponds to S and D
surfaces having linearly dependent normals so that the
contour is trapped; and

(iii) Regenerative; operating when the integrand
itself has the singularity in question.

It is found that for generative and regenerative singu-
larities, the integral is the limit onto real p of an

* The rescarch reported in this document has been sponsored in
part by the Air Force Office of Scientific Research under Grant
AF EOAR 65-36 through the European Office of Aerospace
Research (OAR), United States Air Force.

1 For an account of the analytic properties of integrals and Landau
curves together with a full list of references, see R. J. Eden, P. V.
Landshoff, D. I. Olive,and J. C. Polkinghorne, The Analytic S-Matrix
(Cambridge University Press, London, 1966), Chap. 2.

2 P, V. Landshoff and D. 1. Olive, J. Math. Phys. 7, 1464 (1966);
M. J. W. Bloxham, Nuovo Cimento 44, 794 (1966); J. B. Boyling,
Nuovo Cimento 44, 379 (1966).

% An account of methods using homology theory is given in
R. C. Hwa and V. L. Teplitz, Homology and Feynman Integrals
(W. A. Benjamin, Inc.,, New York, 1966). We do not use these
methods in this paper. Some of our theorems have recently been

obtained by these methods: F. Pham, Ann. Inst. Henri Poincaré
6A, 89 (1967).

analytic function, and that the sense of this limit is
given by a simple rule (Theorem 2). In Sec. 3 we use
a simple argument to evaluate discontinuities across
generative singularities, paying particular attention to
the over-all sign and region of integration of the
resulting discontinuity integral. We are able to treat
the case where there is no vanishing cycle and to
extend the analysis to cover a variety of further
situations.

In the applications which we shall discuss in later
papers of this series, it is not, strictly speaking, the
discontinuity which is important, but rather an
expression denoted by (J, — I_, ;) which gives the
difference between I evaluated on one side of the
Landau curve and a specific analytic continuation to
the same p of the function obtained by evaluating I on
the opposite side of the Landau curve. For an I which
possesses a +ie natural distortion (Sec. 2), this
quantity is, in fact, the discontinuity, but we are also
interested in other cases for which the two evaluations
of I may not be continuations of each other, so that I
does not, properly speaking, have a discontinuity
round the Landau curve. In Theorem 4 we derive
formulas for this important expression for all three
classes of singularity occurring in various combina-
tions.

In the final section we illustrate our theorems by
considering Feynman integrals and briefly survey the
properties of Landau singularities which will be used
in subsequent papers.

2. THE INTEGRALS
Consider a multiple integral

I<p1---p,.)=fdk1---dk,f(plv--pn;kl-‘-k,)
X TI8(Dypy- - pns kv * - kD),
3
or, for short,

I(p) = f dk £(p, 1) TT (D). @1
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PROPERTIES OF MULTIPLE INTEGRALS. I

The integrand f(p, k) is supposed analytic for real
values of p and k, satisfying the constraints

Dj(Psk)=0a j=1"."r’ (2'2)
except for singularities
S, k)=0, i=1"--,m, 2.3)

where S; and D, are real analytic functions. The inte-
gration contours are supposed real, except for small
imaginary detours necessary in order to avoid the
singularities. It is assumed that these can be specified
by the sense along the imaginary normal to the S;,
that is, by deforming the contour near §; by

os,
ok
where ¢, is a real increment of given sign. The corre-
sponding variation in S; is given by

. as, 2
= l€; z (E) s

and we talk of an ““S; 4 i¢;”’ distortion of the contour.
The generalized Landau curve in p space arising
through the participation of some subset of these S’s
and D’s is defined by the implicit equations

ok = (2.4)

l€;,

(2.5)

each participating S(p, k) = 0,
each participating D(p,k) =0,

D
> +2,a’ 0,

where o; and o, are coeflicients which are nonzero for
the participating $°s and D’s. Before seeing that I(p)
can be singular only on certain arcs of these curves,
we dismiss for the time being the case when the
integrand f(p, k) has a singularity S(p) independent of
k. The Landau equations are then trivially satisfied,
and I(p) has the same singularity, which is of the
regenerative type.

(2.6)

The Singularity Theorem

Theorem 14: For real values of p, the integral I(p)
can only be singular at points lying on the Landau
curve (2.6) corresponding to real values of k and
satisfying the further conditions

(i) for each participating S: sign o;¢; = sign €, ,

(ii) for each nonparticipating D: D(p, k) = 0.
2.7

Thus the quantities o;e; must have a common sign,

and e, is a newly defined increment with that sign.

4 See H. P. Stapp, Phys. Rev. 125, 2139 (1962), Appendix H; 1. T.
Drummond, Nuovo Cimento 29, 720 (1963);.P. V. Landshoff and
D. L. Olive, J. Math. Phys. 7, 1464 (1966), Appendix.
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Proof: I(p) is analytic at p only if all its derivatives
with respect to the p variables exist in the sense of
complex variable theory. Let Ap be a small variation
in p and consider

(e +Ap) = [1(p + 8p, 1) TT 4D + 8p, k) k.
For each & satisfying (2.2), we can find a Ak such that

) Dyp + Ap, k) = D(p, k + Ak),
ie.,

L oD
D; (p, AP, = Z

E j (p, K)Ak,, (2.8)
providing the (r X I) matrix aD,/ak,1 has rank r.
This is certainly so if the r rows are linearly inde-
pendent, that is, if the Landau equations are not
satisfied with the participation of D’s alone. If the
equations are satisfied with the participation of D’s
alone, p lies on an explicit singularity, and we can
proceed no further in attempting to prove analyticity
at p. Away from an explicit singularity, Ak(k, p, Ap)
can be found as a linear function in Ap, and is analytic
in k and p, as this is true of the D’s. The transforma-
tion of variables k + Ak = k has Jacobian Jequaling
one plus a function linear in Ap and analytic in (k, p),
and gives

I(p + Ap) = f F(p + Ap, k — Ak TT 8(D(p, b)) dk.

a

We can now calculate the derivatives of I, providing
we can calculate f(p + Ap, k — Ak) for all points on
the contour and for all differentials satisfying (2.8).
In other words, I(p) is analytic if f is analytic at all
points of the contour for differentials lying in the
constraint surfaces (2.2).

Since there may well be singularities of f on the real
contour, the next step is to see under what circum-
stances we can free the contour of singularities by a
small deformation. Let k be a real point satisfying
(2.2), and lying on an intersection of certain of the
singularity surfaces,® so that

Si(p’k)=0a i=19“'9M9 iSMSm'

Consider the possibility of deforming the contour
away from each impinging singularity at k& via an
imaginary increment 6k so that, according to (2.5),

=10k,

: 8k, = ip;, where pi; >0,

i=1,"-, M, (2.9

5 In the applications of interest there are an infinite number of
possible singularity surfaces, but only a finite number can participate
in a pinch which corresponds to a solution of (2.6) giving a curve in
P space.
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while we keep

v s g i

dD; _gl 2%, 6k, =0, j=1, , I
The M + r variations dS and dD are given in terms
of the / quantities 6k by these differential relations. If
the (r 4+ M) x [ matrix relating the differentials has
rank r + M, then we can always find a 0% to give any
chosen dS and dD (not all zero), and in particular to
satisfy (2.9) and (2.10). If the rank is one less than this,
the rows of the matrix are linearly dependent so that
the Landau equations are satisfied by the S’s and D’s.
Lower ranks would still correspond to intersections
of Landau curves and will not be further discussed.
Even if the rank is r + M — 1, it may still be possible
to find differentials satisfying (2.9) and (2.10). Let us
choose 0k so that the latter equations are satisfied.
Then, by (2.6) and (2.10),

(2.10$)

M
> 0;dS; =0
i=1

or, equivalently, if we can apply (2.9),

M
2 0pi=0, pe;>0. (2.11)
=1

This is impossible if the quantities o,e; all have the
same sign. Thus conditions (2.7), in addition to (2.6),
imply that we cannot make a suitable distortion, and
I is singular. Conversely, if we cannot distort con-
tours as required, (2.7) must be satisfied in addition to
(2.6). For suppose oy, > 0. Then we can choose
Ok so that (2.10) is satisfied, p, * - - p;,_; satisfy pe > 0,

and also
M-1

2 ap; > 0.
i=1

It follows from (2.11) that ¢,,p,, < 0. By the hypoth-
esis that we cannot find the desired deformation,
puear < 0,and hence o3¢y, > 0. The same argument
can be repeated to show that each o,e; > 0, which
establishes the result.

The Landau Curves

If the Landau equations (2.6) are solved for k, o,
and « in terms of p, the Landau curve is obtained in
the form

Lp)=Y oS+ SaD =0, (2.12)

We can define a variable 5 measured along the normal
to L at the point p by

a8 oD
(z 05} + Z o a_p) dp, (213)

using (2.6) to obtain the second equality. In general,
we cannot show that the normal variable always

p

BLOXHAM, OLIVE, AND POLKINGHORNE

exists or varies continuously, because there may be
points where all 81./9p vanish.

Singularity of the Landau curve can cease when one
of the conditions (2.7) fails. One way of violating these
conditions is for a ¢ to change sign. It must first
vanish ; and when it does so, the Landau equations for
the lower-order curve with the corresponding .S not
participating are also satisfied. Furthermore, by (2.13),
the normals coincide. Cessation of singularity at a
point of tangency with a lower-order curve is called
the hierarchial effect. As we see later in the study of
unitarity integrals, singularity may also cease at a
point of tangency with a higher-order curve when
some conditions D = 0 cease to hold (an anti-hier-
archial effect).

For the time being we are going to make the
simplifying assumption that a particular Landau curve
arises from a particular combination of participating
S’s and D’s. Then we can prove? the following:

Theorem 2: Near a singular point of a Landau
curve L where the normal exists, the two integrals I
and I, defined in the regions # < 0 and # > 0, are
analytically related to each other by a path of con-
tinuation following an 7 4+ iey,, detour, with €,
defined by Eq. (2.7).

€,4¢ 18 defined only when one or more S°s participate,
and the theorem applies only to this case, that is, to a
generative singularity. In the case of an explicit
singularity in which only D’s participate so that no
€a¢ 18 defined, the integrals I and I, are not, in
general, analytically related. This fact is very familiar:
for example, the three-particle unitarity integral has
an explicit singularity at the three-particle threshold
and vanishes identically below the threshold. How-
ever, zero is not in general an analytic continuation of
its value above.

We think of the integral as a limit as the ¢,’s
associated with the S,’s tend to zero. We may also
consider the motion of L = 0 in p space as the ¢, are
allowed to become small but finite. Variations
ds; = ie;, dD; = 0, lead to a displacement of L given
by dn = —i Y g,¢;. By (2.7) each term o,¢; has the
same sign, which is that of ¢,,,. It is clear that the
sense in which the integral is a boundary value must
be opposite to that in which the singularity moves.
We conclude, therefore, that the boundary value is an
N + i€y, limit and refer to this as the natural dis-
tortion. This is equivalent to saying that _ and I, are
analytically related by an # 4 ie,,, path of analytic
continuation, provided the mechanism under discus-
sion is the only one associated with the singularity.



PROPERTIES OF MULTIPLE INTEGRALS. I

Since, in general, the normal to L is only defined
almost everywhere on L, the integral is only a limit
almost everywhere. Furthermore, as the normal may
not vary continuously along L, the ie prescription is
local rather than global. Later we shall see that the
ie prescription is fully global for the amplitudes, but
not, in general, for the unitarity integrals.

The natural distortion for a regenerative singularity
is understood to be simply its /e prescription so that it
too is given by (2.7).

If I is now singular on L via several independent
generative or regenerative mechanisms, each mech-
anism has its own natural distortion. These may
well disagree and then, as for an explicit singularity,
I and I_ are not analytically related.

3. DISCONTINUITIES OF MULTIPLE
INTEGRALS
The Vanishing Cycle

Suppose that when p = p, the surfaces S; pinch at
k=k:

25,
P 3.1
>, % (3.1
When 7 # 0, define
V, = {k;kreal, 0,5, 2 0, R(k) > 0}, (3.2)

where R > 0 is a small region surrounding k. Then,
if V., = 0in 5 < 0, we say it is a real vanishing cycle
in # > 0. Similarly, if V_ = 01in # > 0, it is a real
vanishing cycle in ¢ < 0,

We illustrate possible regions ¥ by examples (Fig.
1). We see that in (a) there is only one vanishing
cycle, V., in 5 > 0; in (b) there are two, ¥, inz > 0
and V_ in 9 < 0; in (c) there are none.

These examples illustrate two general facts. First,
when the number of surfaces is just one more than
the dimensionality of the space in which they are lin-
early dependent, then there are two real vanishing

'y
1%
YT

F1G. 1. The arrows
indicate the normals
into 0;S; > 0 for each
S; . Itis these normals
whose vector sum
vanishes at the pinch
point (3.1). V., and
V_ are, respectively,
the regions shaded
horizontally and
vertically.

%Xﬁﬂ%
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o 1
FiG. 2. dif” = 4 — B, dif< = C — D, for e > 0.

cycles; second, when the number of surfaces is less
than this and 0,S; > 0 are all convex at k, then V.
is a real vanishing cycle in # > 0.

Definition of ‘‘dif”’
Let g(x) be a function with a branch point at x = 0,
and
g =Ltg(x + ie)
0
where ¢ has some given sign. It is convenient to
introduce the discontinuity forms
dif; g
dif; g
where g(x — i¢) is defined by the cut being drawn
along the positive real axis for dif;” and along the
negative axis for dif;~, as in Fig. 2. We note that
dif; is zero in x < 0 and dif; zero in x > 0. Because
of Theorem 2, for an integral with one generative
mechanism producing a singularity at = 0,

= g(x + ie) — g(x — ie), (3.3)

I(’Y)) = LtOI(”) + ienat)
€nat—
and we can define dif> 7 and dif~ 1. The latter is non-

n n
vanishing in < 0, and if we continue it from there

into % > 0 while swinging the cut round in the half-
plane opposite the natural boundary value so as to
preserve the natural distortion,

dif "I in 5 <0-——> —dif, I

n— IEnt

in >0,
34

where the arrow denotes ““analytically continues into,”
and, as indicated, the path of continuation passes
below n = 0. If, with the same notation,

I,

. < n—i€ b
n—i€nat N1—t€nat

then in # > 0 we may write
dif, I=1, —1

< n—i€nat *
The Basic Discontinuity Formula

For a singularity L generated by a pinch between
S; which form a real vanishing cycle V. in # > 0,
Boyling® showed that

dif]” f fdk = f TT difs, f dk.
Vs

¢ J. B. Boyling, Nuovo Cimento 44, 379 (1966). An intuitive
statement of (3.5) was given in J. C. Polkinghorne, Nuovo Cimento
25, 901 (1962), Appendix.

3.5)
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F1G. 3. The shaded regions are R-regions. Examples (a) are valid,
but examples (b) are not, because as p approaches p, pinches
develop that involve R = 0.

An attractive point is the simplicity of the over-all
factor, plus one. The result is unaffected if f includes
delta-function constraints. We shall rederive this
formula by elementary methods, generalizing the
argument to treat the case where there is no real
vanishing cycle. This is the usual circumstances for
unitarity integrals on mixed « parts of Landau curves.

Consider an integrand f with singularities Sy, - - -,
Sy (having associated distortions ie;, - - -, iey) that
pinch at one point k = £ to give a singularity atp = p
on L. If p lies only on one Landau curve, it must be
possible to choose a region R(k) > O containing k
sufficiently small not to contain any other pinch
configurations, nor allow its boundary to participate
in any pinches with the $’s when p = p. We shall
consider p in the neighborhood of j for which these
statements remain true (see Fig. 3). If

A('r] + ienat) =f fdk’
R>0
then

dif f fdk = dif 4, (3.6)

since [, fdk is nonsingular at j because it omits
the pinch point £. By the definition of difg, [Eq. (3.3)
with ¢, for €]

(Sy + iy, Sy + i€y« +*) — f(Sy — i€y, Sy + iep)
= difg’llf(sp S, + i€y - - ),
where y, = Z accordingly as we choose the cut
attached to S to lie in S; > 0 or S; < 0. To preserve
the S, + ie, rule, the two choices of cut must be related
by swinging the cut through the region S, — ie,.
Repeating for S,,
f(S1 + i€y, Sy + iey, ) — f(Sy + i€y, Sp— ey - 0)
— f(S1 — iey, Sp + €) + f(Sy — i€y, Sp — iey)
= difg, difg, (S, S, - °)-
We can repeat for all S; - - - Sy, providing we restrict
ourselves to 7 = 0, since the normals to the S’s are
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then not linearly dependent where S’s intersect and
in that case the various ““difs”” commute. Integrating
the result over R > 0 yields

J J(S1 + i€y, Sy + i€y -+ ) dk
R>0
+ (=) fR S(S = iy, Sy — i+ ) dk + R

= fR TI dif% fdk. (3.7)

R(#n) is made up of terms with mixtures of S + ie
and S — ie and must be regular on the part of the
Landau curve on which A is singular, by Theorem 1
(2.7), provided that we can assume thatno subset of the
S’s can pinch to give the same L. Later in this section
we discuss the case when this assumption is false.

The first term in (3.7) is A. The second we shall call
B, and (by Theorems 1 and 2) it also is singular, with
the opposite natural distortion % — ey, . There is no
necessity for it to be a continuation of 4. The term on
the right we call C. C., and C_, evaluated in > 0
and 7 < 0, respectively, are not, in general, analyti-
cally related. Because of this we have two independent
equations:

A('r/ + ienat) + B(’? - ienat) + R(’?)
=C.(n)

A("? + iEna.t) + B(”} - ienat) + R("?)
=Cn) in 7<0. (3.9

Continuing (3.9) into 7 > 0 following a 7 — i€y,
detour,

in >0, (3.8)

A + ienay) > Al — lenae) = A(y + iengy) — dify 4,
B(n — i€pat) —> B(n — i€nar)s
R(n) — R(x),
C(m) = (C<(My—ienss>
and we obtain
A(n + iengy) — dify A + B(n — ienar) + R(n)
= (C<)y—ieras» In 7 >0.
Subtracting,this from (3.8) and using (3.6), we have the

result:

Theorem 3: In > 0,

dif? f fdk=Cs — (Cpsenn;  (3.10)
similarly, in ¢ < 0,
dif;* f fdk=Co~(Colysenns (A1)
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where

C= TT difg, fdk  for any choice of ;. (3.12)

R>0

If there is a real vanishing cycle V., Eq. (3.10)
simplifies to Boyling’s form (3.5) because there are
o, such that ¢,S; > 0 is empty in # < 0, so that for
the choice y, = 2 as o; 2 0, C_ has an empty inte-
gration region. Furthermore, for p sufficiently near to
P, 6;8; > 0, where the integrand does not vanish, is
contained in R. This result shows the significance of
the vanishing cycle. Theorem 3 applies even when there
is no real vanishing cycle. In such a case our general
answer apparently depends on the region R > 0. This
cannot be so, as there is no such dependence in the
original integral. In fact, when C_ is continued and
subtracted from C., part of the contours cancel.
The part that remains is independent of R and, in
general, is complex. As far as we know, it is difficult to
specify it by simple rules.

Generalizations of the Discontinuity Theorem

We need some generalizations in order to apply
our results to Feynman and unitarity integrals:

(1) The integrand f can include nonparticipating
singularities. Since these do not enter R > 0, the
argument is the same.

(2) & functions 6(D,) can be included in f whether or
not they participate in the pinch. The argument is the
same.

(3) The integration region may have boundaries
B,,---, By that participate in the pinch. We can
choose the region R > 0 so that only these boundaries
enter near p.

Then, as 1 = 6(B,) + 6(—By),
f B(RYOB) - - - 6(Bap)f dk
- f BRYO(BLOB,) - - - (B f dk

+ f B(R)O(—B,)0(By) - - - 0By f dk. (3.13)

Providing f has no singularity coinciding with B, , the
left-hand side of this equation is regular at j since it
lacks B, (which is vital to the pinch). Repeating this
argument for each B in turn, we obtain

dif f B(R)O(B,) - - - 6(Byy)f dk

= dif f 6(R) TT sign (8,)0(,B,)S dk

for any choice of ;.
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F1G. 4. Some more complicated dif formulas.

Repeating the argument leading to Theorem 3, we
obtain (3.10) and (3.11), where, in place of (3.12),
we have

C= f 11 sign (8,)6(8;B;) T dif%. f dk.
R>0 3 i

This generalizes another of Boyling’s conclusions.®

(4) Suppose the three subsets of S; (defined by two
basic subsets i € [,, i € I, and their union i €I; U 1)
each pinch to give the same L with the same natural
distortion. An example of this is given by the double-
loop self-energy graph of Fig. 4. Consider

h(p, k) = T1 difs; f + [T difg, f — TI difgif
iely iely el U1,

with S + ie; understood for the S’s without “difs.”
h expands to give a linear combination of f’s with
various ie prescriptions for the S;’s. Consider the
f’s in this expansion which have the correct ie pre-
scription for all i € I;. In the expansion of the first
term such an fappears only once, and has S, + ie, for
all the remaining i. In the second term such f’s are
found with all possible mixtures of prescriptions for
the remaining i’s, each combination appearing once.
All these latter f°s appear also in the third term, with
the opposite sign, leaving only the f(S; + ie; - -
Sy + iey) from the first term. Similarly, the term
(—DY f(S; — i€+ - Sy — iey) appears just once,
and no other term appears which, when integrated,
can lead to singularity in accordance with Theorem
1. The argument leading to Theorem 3 then yields
(3.10) and (3.11) with, in place of (3.12),

C=| TIdif§ f+ TI dif¥ f — T dif%, f dk.
Iy I

R>0 I, P £
(3.14)

Similarly, with three basic subsets we find

C=fR>0(H+1;2[+H_H_H

I, I3 Iy I:VI3

_H+

VI

I1

) dif¥, f dk,
ILVIVIg
and so forth.

We shall not discuss in this paper the cases where the

sets I, and I, may have different natural distortions,
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nor the case when similar problems arise for com-
binations of S’s and D’s.

(5) Finally we consider the possibility of an infinite
degeneracy in k, that is, an infinite set of values of &,
continuously connected, all of which satisfy the
Landau equations for a given 7. As a simple example
of this behavior we can take the case when the
participating S’s and D’s are independent of one of
the integration variables k,. Denoting the remaining
variables k, consider f(k) = [ dk,f(ky, k). Each of
the S’s and D’s occur regeneratively in f. difg, com-
mutes with the integration with respect to k, and
dif § fdk = dif f fdk = C. — (C),_jenas» Where

I dif 7 ak = f TI dif £ dk.
Rb >0

The only modification is the obvious one that R
depends on k but not on k,, so that it resembles a
cylinder rather than a sphere in k space.

C =
REY>0

Different Mechanism in the Same Integral

So far we have considered integrals generating a
given singularity L by only one mechanism. Suppose
there are many mechanisms a, b, --. Then, pro-
viding these are independent in the sense that the
corresponding pinch points can be surrounded by
disjoint regions R,, R,, we have

ffdk=ffdk+ Fdk 4,
R, Ry
plus a function regular on L.

Each integral |5, fdk is singular on L by only one
mechanism, but the different integrals may have
different natural distortions, implying that no natural
distortion can be given for the total integral { fdk.
If, on the other hand, the natural distortions of the
various parts are the same, then dif [ fdk is well
defined and is equal to the sum of the contributions
from each mechanism taken independently. As we
remarked in Sec. 1, in the unitarity analysis to which
we subsequently apply our results it is not dif 7 which
is the fundamental quantity, but rather I. — I_,_,
and we now notice that this is a quantity which can
still be evaluated simply even when natural distortions
are mixed.

Suppose fp, fdk has a +ie natural distortion.
Then

(7.~ (...

= dlf;f fdk = C>(R1) - C<(Ri)q—ie,
Ry

BLOXHAM, OLIVE, AND POLKINGHORNE

while, if it has a —ie natural distortion,

( fR' f dk)> ~ ( fR.. s dk)<”_ie= 0.

So for the whole integral

e (3 (29)

where the sum 3 covers the C integrals for the mech-
anisms with a +7e natural distortion.

If I has in addition an explicit singularity corre-
sponding to a pinch of constraint surfaces at ky, we
surround this point with a region R and divide I into
two parts § ., fdk and §5_, fdk. If R is sufficiently
small, the first integral has no generative singularity,
while the second has no explicit singularity so that the
previous analysis applies. Equation (3.15) is unaltered
if for an explicit singularity we understand the C
function to be I itself, integrated over R, and require it
to be included in both summations >, and X _.

We now consider the case when [/ is singular by
both a regenerative mechanism and a generative
mechanism (but not also singular by an explicit
mechanism). The natural distortion for the regen-
erative singularity is simply its ie prescription
(understanding S = positive number X L). We are
concerned with evaluating I, —I_, , and both
mechanisms will only be nontrivially involved if they
both have +ie natural distortions. In this case

1>—1<k“=(fﬂ5+4ssf+kadg

(3.15)

_ ( f 1(S + ie, S, + i€) dk)

<p—i€
=fﬁ@f+1>—Jq¢,
where

J =ff(S — e, S, + ie) dk

and we have used the identity of S + /e and § — iein
n < 0. Now the regenerative mechanism making J
singular on L has a —ie natural distortion, so,
applying the previous analysis and using f(S — ie) =
S(S + ie) — difg f, we obtain

Iy =Ty i = f dif3 f(S, S, + ic,) dk

+ ( f TI dif¥, /(S + ie, S) dk)
R>0 >

— (the same) . i€

— f difg TT dif%, f(S, S,) dk.
R>0 ) ¢
(3.16)
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In the situations to which we shall apply this result, the
final multiple discontinuity will be zero, and we once
more obtain a straightforward sum of two contribu-
tions.

Thus in these circumstances we arrive at our final
theorem.

Theorem 4

I, =Ty ie= (2 ) - (2 C) , (3.17)
+ > + <n—i€

where the sum runs over explicit mechanisms and

over those generative and regenerative mechanism that

have an % + Ze natural distortion, and

C= TT dif¥, f dk, for generative,
Rag>0

for regenerative,

C= J’ dif3 f dk,

C=| fdk,

Rz>0

We have not proved this theorem for the case when
all three mechanisms occur in a single integral, as this
will not be so in any of the applications we have in
mind.

Similarly,

Iy = Icpic = (2 C)> - (g C)<ﬂ+i5,

where > _ includes mechanisms with # — ie natural
distortions and explicit mechanisms.

for explicit mechanisms.

4, APPLICATION TO FEYNMAN INTEGRALS

We now illustrate our work by considering Feyn-
man integrals. They constitute a particularly simple
example, provided one ignores, as we shall, the
special features arising from the noncompactness of
their integration regions.

In a theory with one spin-zero particle of mass m
with Lagrangian terms of the form gg"¢'™/n! m! +
c.c., the contribution to an amplitude corresponding
to a particular connected Feynman diagram F is given
by the Feynman rules’

(i) g for each vertex,
(ii) (g2 — m?® + ie)* for each line,

(iii) fi(Zw)“‘ d*k for each loop,

(iv) (ny)t, where ny is the symmetry num-
ber of the diagram, that is, the number of per-
mutations of internal lines which preserve F,
holding external lines fixed.

4.1

7 T. T. Wu, Phys. Rev. 125, 1436 (1962). These rules apply to the
amplitude which is the connected part of the § matrix with the factor
—i(2m)*0(P; — Py) divided out, taken between covariantly normal-
ized states so that, e.g., (p | p") = (2m)32p%(p — p’).
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It is understood that the internal momenta g are ex-
pressed as linear combinations of the loop momenta
k and the external momenta p. Such an integral has
singularities S;(k, p) = g7 — m?, each with an § + ie
prescription, and no D constraints. Applying Theorem
1, we find that the integral is singular for real p at
points of the Landau curve:

each participating line:

4.2
each loop:

4.3)

where for each participating line sign « = sign €, .
> denotes summation over the lines through which k
runs. It is conventional to choose the over-all sign of
the o’s so that they are all positive at a singularity and
talk of the positive a parts of the Landau curves.
Following (2.12) we can write a Landau curve as

L(p) =3 g’ —m") =0 (4.4)
and define a variable along the normal by
oL
=35 dp=3 (Sea) dp. @9

It is a consequence of a theorem due to Pham?® that
the normal varies continuously along a positive a arc
of a Landau curve. The theorem states that if j is a
point on a positive « arc of a Landau curve, then all
points p of L corresponding to ¢ with the same sign
as at p lie to the same side of the tangent plane at p.
Thus, as long as we exclude parts of L corresponding
to internal antiparticles rather than particles, L is
convex at positive o points. Having chosen the « to be
positive, we refer to dn > 0 as the inside of L.
Furthermore, the integral has an # + ie prescription,
that is, it is the limit onto real % of a function analytic
in Im 5 > 0. Each Landau singularity of a Feynman
integral has associated with it a figure obtained from
the Feynman diagram by contracting nonparticipating
lines. According to the hierarchical effect of Sec. 2, a
singularity associated with one such diagram is
switched off where one or more «’s vanish and this
will be at a point of tangency (effective intersection)
with the lower-order curve whose figure is obtained
by contracting the relevant lines. There the boundary-
value prescriptions for the integral on the two curves

8 F. Pham, Ann. Inst. Henri Poincaré 6A, 89 (1967). Similar
results and generalizations to the mass shell appear in C. Chandler
and H. P, Stapp, “Macroscopic Causality Conditions and Properties
of Scattering Amplitudes,” to be published in J. Math. Phys. 10
(1969).
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agree, and (since also the sense of the boundary value
varies continuously round each positive « arc) we can
say that a Feynman integral possesses a ‘“‘global ie
prescription.”” We shall discover in the next paper this
is not something we can say of unitarity integrals, as
these may be singular on mixed « arcs.

There are also more complicated hierarchical effects
corresponding to the possibility that the contraction
may yield a hinged graph, that is, two subgraphs
joined by a common vertex. In this case the three
normals of the corresponding Landau curves are
linearly dependent.

The Discontinuity

For simplicity we only evaluate the discontinuity of
a Feynman integral across its “leading singularity,”
in which all lines participate.

Let us assume first that the conditions of Theorem
3 are satisfied. By Pham’s theorem® above, each
region (g2 — m?) > 0 is convex at the pinch point.
Hence there is a real vanishing cycle in # > 0, and
C_. = 0. As each singularity is a pole and

dif 2 (g2 — m® + i) ! = —2mid(g? — m?),

we find that dif> F is obtained from the Feynman

BLOXHAM, OLIVE, AND POLKINGHORNE

FI1G. 5. A simple hinged
diagram.

integral by replacing each propagator as follows:
(g® — m® + ie) ™ — =2mid(q®> — m?). (4.6)

This is the well-known Cutkosky rule.

The straightforward Cutkosky rule requires modi-
fication when the Feynman integral satisfies the con-
ditions of generalization (4), as do, for example, the
graphs on the left-hand side of the equations of Fig.
4. In this case (3.14) is applicable and results in
discontinuities such as those given in the figure, where
the graphs are evaluated by the Feynman rules (4.1),
except that —|— is to stand for —2mid(g® — m?)
while represents the usual (g2 — m? + ie)!
propagator.

Finally, we note that some diagrams give rise to two
or more simultaneous singularities. A trivial example
is the double pole of Fig. 5. We call such diagrams
hinged diagrams. In such cases the multiple discon-
tinuity across the simultaneous singularities is given
by the Cutkosky rules.
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For scattering off singular repulsive potentials at high energy, the large-angle scattering is shown to be
classical. For nonrelativistic singular potentials of the form V(r) = gr= (g > 0, n > 2), we give the
explicit form of the differential cross section for large angles at high energy as a power series in (= — 0).
The coefficients of the linear through cubic terms in (s — 6) are obtained.

In recent years a large amount of effort has gone
into the study of singular potentials. In nonrelativistic
theory, there have been studies of exact scattering
solutions for special cases,! studies of special tech-
niques of solution (peratization),? and studies of high-
energy® and low-energy* phase shifts. In addition,
various papers have dealt with general theoretical
problems® and physical applications.®?

Despite the many investigations in this area, there
has been little work on differential cross sections with
two main exceptions.” These two papers are not only
very specialized but are very complicated formally.
In this paper we demonstrate that for singular po-
tentials the high-energy large-angle (nearly backward
in the center-of-mass system) scattering is classical.
This enables us to explicitly calculate the differential
cross section by means of a power series in the classical
impact parameter. This yields a power series in
(m — 6) for the scattering for 6 ~ 7. We explicitly
evaluate the linear through cubic terms and indicate
the region of validity of these terms. A brief abstract
of this work has been previously reported.®

Our argument to establish the necessary classical
behavior follows along lines given in Schiff® for the
classical limit of Coulomb scattering. For high
energies the quantum-mechanical scattering can be
classical if the wavelength of the incoming particle is
small compared to the classical distance of the closest

1 R. Spector, J. Math. Phys. 5, 1185 (1965); E. Vogt and G. H.
Wannier, Phys. Rev. 95, 1190 (1954). References 1-7 are only repre-
sentative, not comprehensive.

? G. Tiktopoulous and S. Treiman, Phys. Rev. 134, B844 (1964);
H. Aly, Riazuddin, and A. Zimmerman, ibid. 136, B1174 (1964);
R. Spector, J. Math. Phys. 7, 2103 (1966); T. T. Wu, Phys. Rev.
136, B1176 (1964).

3 F. Calogero, Nuovo Cimento 27, 261 (1963).

4 T. O’Malley, L. Spruch, and L. Rosenberg, J. Math. Phys. 2,
491 (1961).

5 H. Cornille, Nuovo Cimento 38, 1243 (1965); 39, 557 (1965);
43, 786 (1966).

® R. Spector and Ramesh Chand, Progr. Theoret. Phys. (Kyote)
39, 682 (1968).

? G. Tiktopoulous, Phys. Rev. 138, B1550 (1965); C. B. Kouris,
Nuovo Cimento 44, 598 (1966).

8 R. Spector, Bull. Am. Phys. Soc. 12, 50 (1967).

® Leonard Schiff, Quantum Mechanics (McGraw-Hill Book Co.,
Inc., New York, 1955), 2nd ed., p. 120.

approach. This requires that
1k Lo M

where k is the wavenumber and r, the closest-approach
distance. For a singular potential of the form
V(r) =gr" (g >0, n> 2) we have

gro™ = E = K*%*[2m,

ro = Qmg|HK*)/", (2

so that (1) gives
h2/nk—l+2/n

(2mg)/

For n > 2 there is some energy above which (3)
becomes valid. In fact, at any energy (3) is true for a
large enough mass so that there are nonrelativistic
regions for which (3) is true. Actually, (1) is obviously
fuifilled at high energy for any singular potential 1
However, (3) alone is obviously not quite sufficient to
make the scattering classical.

For example, the forward scattering for n > 3 in the
quantum-mechanical case is well defined,!! but classi-
cally it diverges. This occurs because the long tail of
the potential falls off too slowly classically, giving rise
to much small-angle scattering from large impact
parameters. Quantum-mechanically this small-angle
scattering cannot be resolved due to inherent quantum
uncertainties.

For large-angle scattering at small impact param-
eters we may always obtain /(w — 0) > 1 for high
enough energjes except only at 6 = = where / = 0.
Hence this condition, which is the usual classical
limit requirement,'! can be satisfied arbitrarily near
o for high enough energy.

The classical formula for the scattering of a particle
of energy E with impact parameter s is'*

6= m— 2s L ""[1 _ V—}(Z“—) - szuz]_%du, )

10 We mean, in the usual terminology, any potential more singular
than the inverse square at the origin.

111, D. Landau and E. M. Lifshitz, Quantum Mechanics (Perga-
mon Press, Inc., London, 1958).

<1 3)
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where V(u) = gu™ = gr~" and 0 is the center-of-mass
scattering angle. In (4), u,(s?) is the value for which we
have

TPERACH Y Jy )
We write (4) as
y=m—0= ZZ%J‘ 0[1 - " — zu2]_’} du (6)
0
with z = s?and A = g/E. We wish to investigate small

values of z which give rise to large-angle scattering.
To this end we write

uo(z)

1(z) = f [ — u" — zu®]* du, (7
0

where

ug(0)
10) = f [ — 2T du, with ue(0) = A~".
0

Putting r = Au™ we immediately have, with p = 1/n,

1
1(0) = pA~? f (1 — ot dy, (8)
0
where the integral is just the beta function and
'@ SRA()]
pY="—r=m . 9
g 'e+d e+ d

The linear z term in I(z) is not so easily found
because z appears in both the upper limit of integra-
tion and the integrand. No expansion for small z is
possible unless the limit [which is the root of Eq. (5)]
and the integrand are consistently approximated at
the same time.

We may evaluate the derivative of I(z) at z =0,
however. Thus,

dI . \: dug/dz
— = lim 1
dz  R-wl[l — AR® — zR?]

u® du

1 R
= , (10
+2L [l—lu"—zuz]%:l (10)

where the limit is necessary since the two terms have
mutually cancelling singularities. To circumvent this
we may integrate by parts the integral in (10):

1 JR (nA + 2zu) u® du
2Jo (nA + 2zu) [t — Au™ — zu??
_ u 1 R
niut 4+ 2z [1 — du" — zu®t|,
_[" ! i[ u }du. 11
o [t — Au" — zu®PFdulniu™2 + 2z

It is trivially shown by differentiating (5) with respect

RICHARD M. SPECTOR

to z that

g du,
—_—— = -, 12
niuy=? + 2z dz (12)
so that the upper limit of the integrated term in (11)
exactly cancels the corresponding term in (10) in the
limit R — u,. We have now that

dl f"oif” 1 d {ua_"}
= == — du
1m0 o 1= Autdul na

dz
Fid 2—n
(n — 3) u du.
ni Jo [1— ump

This integral converges only for n < 3; however, the
expression in (11) exists at z = 0 for all n. What has
happened is that in going from (11) to (13) the lower
limit of the integrated term in (11) has been lost since
it is zero for z # 0. And the integral in (11) also exists
for all n for z # 0. However, for z = 0 the integrated
term and the integral in (11) have mutually cancelling
singularities for n > 3. This is easily seen since near
u ~ 0 we may neglect the square root and do the
integral near its lower limit. The result exactly cancels
the lower limit of the integrated term in (11) for all
n, and for all z whether zero or not.

Since the value of dIfdz at z = 0 is well defined for
all n > 2 and must agree with (13) for n < 3, we may
evaluate (13) and use that value for all 7' Thus,
with ¢t = Au™ again,

_ 1
dI — 2’—311(_'1_2_3)] t3p—2(1 — t)—i' dt
2=0

(13)

dz nt ) Jo
_ (n - 3) IG3p — HIE)
n* /] TGp—%
I'Gp
I'Gp—13)
We have that, since 1(z) ~ 1(0) 4+ [dI(0)/dz]z,
x = A5 — A,s®

= —1%p /7 (14)

(15)
with
I'(p)
I'p+3)’
Az — Z(ﬂ)i‘pl—aﬁ F(3p) .
I'Gp—9
We must seek s as a function of y to find the differ-
ential cross section, We put

s = By + Byx* + By’

12 More explicitly, Eq. (13) is defined in a strip in the complex »
plane which includes the real axis. Then (13) exists for all Re n > 2
at z = 0. Equation (14) must be true for Re n > 3 by analytic con-
tinuation. Actually (14) can be found by other lengthy means
involving some manipulations on (13) which dispense with the
sophisticated analytic-continuation argument used here. The answer
has been found this way and is the same, as it must be.

A, = 2m)pi?
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and assuming yx is small, solve (15) to cubic order.
This results in

1 A; 5
s~ — =24
i + pres
ds 1 34, o
— A —— = 2R 16
do A, A} (16)
Using the standard formula we have
ds 1 44
in o(0) = —s — ~ — —2 48 17
sin bo(6) = —s 2~ + 22 ()

valid for high energies and y ~ 0 (0 ~ =).

We may investigate the validity of (17) by requiring
that
44,
A
44,
A
22 TCpI(p + 1
7p* T3p — HI¥(p)
For n large enough (p small enough), we may get a
ready evaluation of (18), since I'(x) ~ 1/x for small

X
AY’

3 <

2

< 1, (18)

<1
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x, as

2= —0) < V6.

Hence, for large n, Eq. (17) is valid for 6 deviating
from = by, say, up to half a radian or so. We note that
the validity of (17) as shown by (18) is independent of
energy. However for energies too low, the expression
(17), though a valid expression for the classical
scattering, does nof approximate the quantum-
mechanical expression. It it necessary to keep in mind
that (17) is a limit in two senses: large energy and
large angle.

High-energy singular-potential scattering is of
physical interest in the investigation of p—p and =—p
scattering. Such potentials with complex strengths
have been used by a number of workers.” An extensive
discussion of the physical use of singular potentials
may be found in a forthcoming review paper.!3
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An application of the abstract mean ergodic theorems to quantum systems is described, which is
rather closely analogous to the application of these same theorems in classical statistical mechanics.

The abstract mean ergodic theorems? can be applied

to algebras of quantum observables to yield results.

which are in closer analogy to the ergodic theorems of
classical statistical mechanics than the quantal ergodic
theorems of von Neumann and Pauli-Fierz (for the
latter, see, e.g., Ref. 2 or 3).

In the classical case, if fis a function on the phase
space Q of a conservative mechanical system, if
w — w, is the temporal transformation in time ¢ of a
point w € Q, if U, f(w) = f(w,), and if

1 t
fo=1 f U f(w) ds,

then the von Neumann or L, mean ergodic theorem
states that, if f € Ly(Q, u) (¢ the Lebesgue measure),
then f, converges in the L,(u)-norm topology to a
function f; € L,(Q2, u) which is invariant under the
transformation U, (U.f, = fo). If p is a finite invariant
measure on ) and fe L,(Q, p), then the individual
ergodic theorem states that f, converges pointwise
almost everywhere (p) (i.e., except possibly on a set
of p measure zero) and also in the L,(p)-norm topol-
ogy to an invariant function fj € L;(€2, p); here, it
is the convergence in L, norm (which we may call the
L, mean ergodic theorem) which generalizes to the
quantum case.

For quantum systems with a Hilbert state-space
X, the analogs of the classical L, and L, spaces above
one, are,respectively, the Hilbert-Schmidt algebra §
and the trace-class algebra G of compact linear
operators on J (see Ref. 4 for the relevant theory).
A compact operator T admits the polar representation

T= ;ai'ﬁt ® M

where ¢ ® 9* is the tensor product of ¢ e J and
w* €Je*, the «, are the eigenvalues of |T| = (T*T)}

* Work performed under the auspices of the United States Atomic
Energy Commission.

1 P. R. Halmos, Lectures on Ergodic Theory (The Mathematical
Society of Japan, Tokyo, 1956).

2 R. Jancel, Les fonde ts de la méc
quantique (Gauthiers-Villars, Paris, 1963).

3 1. E. Farquhar, Ergodic Theory in Statistical Mechanics (John
Wiley & Sons, Inc., New York, 1964).

4 R. Schatten, Norm Ideals of Completely Continuous Operators
(Springer-Verlag, Berlin, 1960).
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(hence a; > 0), the y; are the corresponding eigen-
functions and ¢; = Wy,, where T = W |T| and W is
partially isometric. Then 8 consists precisely of those
compact T such that 3, «? < co0, B of those such that
>.a; < © (hence G < 8), and both are Banach
algebras when equipped, respectively, with the Hilbert—
Schmidt norm | T, = (3 «®)} = [Tr (T*T)]} or the
trace norm || T||, = Y «, = Tr |T| (where Tr denotes
the trace). Furthermore, § is also a Hilbert space
when equipped with the inner product (7, S) =
Tr (T*S) (i.e., S is an H* algebra).

Consider now a quantum system with Hamiltonian
H. The temporal transformation of any T € £(J€), the
algebra of all bounded linear operators on J, is
(in the Heisenberg representation)

T, = M Te "H = UTU, = K,T. Q)

Theorem 1: {K,} is a one-parameter isometric posi-
tive group of linear transformations on either 8 or G:
ie, |KTl, = ITl,, IKTI, = ||Tl, and K,T 2 0 for
alltif T > 0.

Proof: 1t is obvious that X,,, = K,K, = K.K,. The
rest follows immediately from the polar representation
(1) of T: thus, if T€ 8, then

K,T = Z “i(Ut¢i) ® (Uspd)*;

since {Up;}, {Up;} are orthonormal sets, K,T € 8
and [|K,Tll, = G, ocf)* = ||T),. Similarly, if T €5,
then K,T7€G and |K.T|, =, a; = || Tll,. Further-
more, T 2> 0 if and only if ¢; =y, in (1); hence if
T > 0, then obviously K,T > 0. Q.E.D.

Theorem 2: The one-parameter group {K;} is
strongly continuous on either 8 or B (considered as
Banach spaces).

Proof: Let us introduce the common notation
| Tll,; to mean either |T), or |T,, while | T| is the
usual operator norm of T [considered as an element
of L(IC)]. It is sufficient to prove that [[(K, — DT|,, —
0 as 7 — 0 when T is self-adjoint, for it is known (cf.
Ref. 5) that this implies that ||(K,,, — K)T|,, — 0 as

® E. Hille and R. S. Phillips, Functional Analysis and Semigroups
(American Mathematical Society, Providence, R.1., 1957).
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h— 0, and we can apply the result to the Hermitian
components of T in the general case. Using the polar
representation (1), we find that if 7* = T, then (cf.
Ref. 4):

I(K, ~ DT},
< UK = DTl 10 + ITW, = D,
= 2|(UF = DTl, < 3o, WUF = D ® ¥},
= 3w [(U*— D, 3)

because [|¢ ® p*|,, = ¢l 9l = 1. Since {U;} is a
strongly continuous one-parameter group of unitary
transformations on X, ||[(U, — D¢, —0 as ¢t—0.
Since |[(U; — I)¢;| < 2, we can choose n such that
for every € > 0,

Z Ol “(Ut* - I)‘l’k“ <2 z oy < £
k=n k<n 2

uniformly in ¢, and then choose 7, such that for
t < ty, 27 o; |(UF — Dl < €/2. This proves that the
last expression in (3) converges to 0 as ¢ — 0. Q.E.D.

It follows that we can apply the theory of param-
etric semigroups of linear transformations on a
Banach space (cf. Ref. 5) to {K;} operating on either
8 or B. Thus, {K,} has an infinitesimal generator iD
with dense domain D(D): i.e., we can write

K, = &2,
It follows at once from (2) that, for all T e D(D),
DT = HT — TH;

C

)

thus D is a derivation: i.e., if also Se€D(D) and
TS € D(D), then

D(TS) = (DT)S + T(DS). (6)

We also know that the spectrum of D is real (because
{K} is a group: cf. Ref. 5).

The point spectrum of D may be characterized as
follows (T below may be considered either as an
element of 8 or of B):

Theorem 3: T is an eigenfunction of D: i.e., DT =
AT, if and only if its polar representation is of the
form

T=Z‘xi¢i®wi*’ Q)

where, for each 7, ¢, and v, are eigenfunctions of H
corresponding respectively to eigenvalues E;, E! such
that E;, — E] = A.

Proof: It follows from (5) that DT* = (DT)*;
hence, from (6), if DT = AT and DS = %S, then
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D(TS*) = (A — 5)TS*. Therefore, if the polar repre-
sentations of 7T is (7), then

D(TT*) = 2 «;D(¢; ® ¢) =0
and '
D(T*T) = 3 «iD(y; ® ) = 0.

Hence D($, ® ¢}) = D(y; ® p;) = 0 for all i, which
implies that the ¢, and v, are eigenfunctions of H.
Let Hp, = E;$, and Hy, = E]y,; then

DT = AT = Y a(E; — E})¢; ® v}

1

Hence DTy; = Aw;$; = «,(E; — E[)$;, which proves
that E, — E; = A. The converse is obvious. Q.E.D.

We shall call T invariant if K,T = T and denote by
N’(D) the null-space of D:i.e., N(D) = {TII TeD(D)
and DT = 0}. It follows immediately from Theorem
3 that:

Corollary 1: The following statements are equiv-
alent:

(1) T is invariant.

2) Te N(D).

() T=2,0¢; @y, where ¢; and y, are eigen-
functions of H corresponding to the same eigenvalue
E,.

Corollary 2: If T > 0 (and in particularif T = p, a
density matrix) then its polar representation is 7" =
>, a$; ® ¢F, and T is invariant if and only if the ¢,
are eigenfunctions of H.

Since 8 is a Hilbert space, von Neumann’s mean
ergodic theorem applies (see Ref. 1). Let R(D) denote
the closure in 8 of the range of D; then obviously
N'(D) and R(D) are closed linear subspaces of §.

Theorem 4: If T € 8, then there exists a unique
invariant element 7, € N°(D) such that

= 0.

-4

lim

t—= 0

1 i
—fKaTds - T
tJo

The operator P defined by PT = T, is the projection
on N(D): P = P2, R(P) = N(D) and N'(P) = R(D);
i.e., 8 admits the direct-sum decomposition

$ = N(D) ® R(D).

In other words, the linear operator

t
lfK,,ds,
tJo

on 8, converges strongly to P as t — 0.
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We now turn to the analog of the classical L, mean
ergodic theorem. The role of the invariant measure p
in the latter is played here by an invariant density
matrix p, and the classical convergence of the time
average T, in the L,(Q, p)-norm topology to an
invariant function f; is replaced by convergence in the
trace-norm topology of T, to T,p, where T is any
bounded linear operator,

t
T, = t“J; K,T ds,

and T, is invariant (K,T, = T,); we make use in
proving this result of the facts that, if T'e £(J€), then
Tp €6, and that, since g is invariant, K,(Tp) =
(K. T)p.

Theorem 5. Let T € £(J€) and let p be any invariant
density matrix. Then there exists an invariant element
T, € £(X), such that

i
(lf K,T dS)p — Top
tJo

Furthermore, T is uniquely defined modulo g in the
sense that if T, is another such ergodic limit, then
(T, — Ty)p =0 for all invariant p; in fact, if P is
the projection on the linear subspace of ¥ spanned by
the eigenfunctions of H, then T, = T P.

= 0.

T

lim

1=

®

Proof: We use the following terminology: if {T,} <
B, we say that {T,} converges (o) to T[T, — Ty(0)]
if |T, — T,ll, —0, and that it converges (r) to
T[T, — To(v)] if TyeT and |T, — Tyl = 0. Let
S, = (1/0)ft KT ds, 1ét {¢,} denote the system of all
eigenfunctions of H and let m; = ¢; ® ¢;. By Theorem
4, Sg,— S(¢), but S = S7i— Sym,, hence
Sy, = S. Since S, € N (D), by Corollary 1 of
Theorem 3, S, = >, v.4; ® ¢;, where v, is an eigen-
function of H belonging to the same eigenmanifold as
$,;; hence Sim, = v, ® ¢ = S,. If p is an invariant
density matrix, then, by Corollary 2 of Theorem 3,
p =2, um, and S;p =3, «;Sym;, with the series
converging (7) uniformly in ¢, since
ntk

> «,S,m;
n

n+k .
< Z o | TH.
Hence,

lim (7)S.p = S(p) = 2 a; lim (7)S,m, = Z a VY ® A3
t—= ) t—= i

ie., S,p converges (7) to S(p) and, hence, S(p) =
3. a9 ® ¢F € B, which implies that ; «, |y,| < co.
This must be true for every positive sequence {o;}
such that 3, «; < o, since p can be any positive
element of N°(D). Thus {y;}e€lf =1,, the dual of

J. E. MOYAL

the sequence-space /;, and is therefore bounded.
Let To = 3, yv; ® ¢F: i.e., T, is the bounded linear
operator such that, for every y € J€,

Ty = Z vibi> VIV;

(cf. Ref. 4). It is then simple to verify that Top =
S(@), which proves (8). It is also easy to see that T
is invariant: for it follows from the expression above
for T, that, if y € J¢, then

(K,Tp)y = ' ET,etHy = z y($,;, e Hy) (e Hy )
7
= 27", vy
7
= z y{(b;, v, = Tyy,
7

since e, = ¢Fip. and e'tHy, = 'y . Finally,
if S,p— Ty,p for all invariant p, then clearly
(Ty— Ty)p =0 for all such p and, in particular,
(T, — Td; ® ¢F =0 for all i; hence, if P is the
projection defined in the Theorem 5, then

(T, — T)P =0

and, since obviously T,P = T,, we have T, = T P.
Q.E.D.

Another application of the abstract ergodic theo-
rems, which we describe only briefly, is feasible in the
case of algebras of quantum observables which
admit a phase-space representation (cf. Ref. 6).
The Weyl correspondence’ W maps functions g on the
classical phase space {2 = R®*® onto linear operators
G = W(g) in a suitable representation of the canonical
commutation relations: e.g., as operators on X, =
L,(R™). This correspondence can be extended to
boson fields (cf. Refs. 8 and 9): for example, using
the Fock—Cook representation (cf. Ref. 10), W maps
symmetric functiops g on Q = UJ,_, R®" onto linear
operators G = W(g) on Xq = @, , X", where X" is
the n-fold tensor product with itself of & = L,(R?).
(This representation is the natural setting for the use
of the grand canonical ensemble.) The time trans-
formation K,G = e?*#Ge~**H induces a transformation
(denoted by the same symbol K;) on g = W(G),
whose infinitesimal generator D can be written
explicitly for a wide class of C* functions (cf. Refs.

6 J. E. Moyal, Proc. Cambridge Phil. Soc. 45, 99 (1949).

7 H. Weyl, The Theory of Groups and Quantum Mechanics
(Methuen & Co., Ltd., London, 1931).

81. E. Segal, Mathematical Probi. of Relativistic Physics
(American Mathematical Society, Providence, R.I., 1963).

9 D. Kastler, Commun. Math. Phys. 1, 14 (1965).

10 J, M. Cook, Trans. Am. Math. Soc. 74, 222 (1953).
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11 and 12) in the form

D, = (2/h) sin (82){3,,3,, — 2,9, }(Hg),
where H = W-YH) and {9,0, — a“a,l}(ﬁg) =

{ﬁ,g}, the classical Poisson bracket.

If g € Ly(2), then it is easy to see that K, actingon g
satisfies the conditions of the classical L, mean ergodic
theorem. However, it is known (cf. Ref. 13) that
W maps L,(2) isometrically (apart from a normal-
ization constant) onto the Hilbert-Schmidt class §,
so that all one obtains in this case is again the state-
ment of Theorem 4.

Suppose, however, that p is a finite probability
measure on Q which is invariant under K,, and

11T, F. Jordan and E. C. G. Sudarshan, Rev. Mod. Phys. 33,
515 (1961).

12 A, Grossmann, G. Loupias, and E. M. Stein, ‘‘An Algebra of
Pseudodifferential Operators and Quantum Mechanics in Phase-
Space,” Ann. Inst. Fourier (to be published).

13 J. C. T. Pool, J. Math. Phys. 7, 66 (1966).
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suppose that g e L;(Q, p); then it can be seen that
K, satisfies the conditions of the individual ergodic
theorem (and hence the L, mean ergodic theorem),
so that

1 t
—stgds
tJo

converges almost everywhere (p) to a limit g, €
L,(Q, p), and

lim
t= 0 JQ

dp(w) = 0.

1 4
_J ng ds — go
tJo

This result is valid for boson fields using the Fock-
Cook representation.
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It is the purpose of this article to study the various kinds of bound states and their properties that can
occur in quantum field theory. The ability of quantum field theory to create and destroy particles makes
the picture of a bound state very complex. However, for this very reason it allows for a larger variety of
bound states than can occur in nonrelativistic quantum mechanics. Not only do we consider those bound
states that appear as poles in the tau functions,but also as branch points. The bound states that appear as
branch points offer many new possibilities in constructing composite theories. An example of this type of
bound state is given in which the fermion is a bound state of a boson. The many ambiguities that exist
with this kind of bound state are illustrated. In discussing the bound states that appear as poles we have
broken them into three subgroups: N-body bound states, mixed bound states, and self-interacting bound
states. The N-body bound states are the most analogous to those occurring in nonelativistic quantum
mechanics. The mixed bound states have the peculiar property of not being composed of any unique
group of elementary particles. The self-interacting bound states are those that are directly coupled with

themselves. The characteristics of these subgroups of bound states are discussed and illustrated.

L. INTRODUCTION

In previous articles!~® a method was developed for
constructing Lagrangians with composite fields that
gave equivalent results to theories where the fields
were elementary. This method is very useful in
studying the various properties of composite fields
since comparison can be made with elementary ficlds
that have similar characteristics. It is the purpose of
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this paper to study the various kinds of bound states
and their properties, relying strongly on this method
of comparing them with elementary fields of a similar
nature.

We restrict our discussion to Lagrangian field
theories, implicitly assuming that it satisfies the
assumptions of axiomatic field theory.

In the context of quantum field theory only a small
class of bound states has been considered. Essentially,
they are those bound states which manifest themselves
as poles in the various tau functions. These are the
most obvious kind because of the analogous type of
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most obvious kind because of the analogous type of
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bound state that occurs in nonrelativistic quantum
mechanics. In nonrelativistic quantum mechanics we
can interpret these bound states as being composed of
N elementary particles held together by an attractive
force. The classical examples are atoms and molecules
which are composed of the nucleus and electrons—
the elementary constituents bound together by an
attractive Coulomb force.

In quantum field theory the physical picture that a
bound state is composed of N elementary particles
bound by an attractive force is no longer valid. This
is so for the following reasons:

(a) The binding force is due to the exchange of
particles.

(b) The N elementary particles will each be en-
gulfed in a virtual cloud of particles.

(c) The N elementary particles can virtually trans-
form into other kinds of particles.

The picture of a bound state becomes very hazy.
It is no longer a trivial task to tell whether or not
a bound state is composed of N particles. For ex-
ample, to say that the pion is a two-body bound state
of a nucleon and an antinucleon, or that the deuteron
is a two-body bound state of two nucleons, is no
longer a trivial problem. This observation cannot be
accomplished by observing which tau functions
contain the various singularities that are due to the
bound states.

The ability of quantum field theory to create and
destroy particles has caused the interpretation of
bound states to become more complex. However, for
this same reason we can consider a much larger class
of bound states that do not appear in nonrelativistic
quantum mechanics. In particular, it may very well be
the case that the bound states manifest themselves as
branch points rather than poles in the tau functions.
This new kind of bound state offers many new possi-
bilities in constructing composite theories. Up to now,
the spin-} fields have occupied a unique position in
that they were regarded as being more elementary
than, for example, the boson fields. The reason for
this is that one could in principle always make the
integer and higher-spin fermi fields appear as bound
states of the spin-} field. To go the other way was not
possible. One explicit example of such a theory is the
Heisenberg nonlinear theory.* If one allows for this
much wider class of bound states, then it is possible
to construct theories where the spin-} fields appear as
bound states of, for example, spin-zero fields. This
removes the spin-} field from its unique position of
being the most fundamental field. This is very appeal-

¢ H. P. Durr, W. Heisenberg, H. Mitter, S. Schlieder, and K.
Yamazaki, Z. Naturforsch. 14a, 441 (1959).
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ing, since nature in no way has conveyed to us that
the spin-$ fields should occupy such a prominent role.

Bound states in quantum field theory have been
discussed from numerous points of view. Nishijima,’
Zimmerman,® Haag,” and others have studied the
Heisenberg field operators for the bound states.
Gell-Mann and Low?® constructed the Bethe-Salpeter
amplitudes, following which numerous articles have
been devoted toward understanding the properties of
bound states. Recently the vanishing of Z, (i.e., the
wavefunction renormalization constant) has also been
linked to the study of bound states.? In all of these
cases only those bound states that appeared as poles
in the tau functions were considered. This is only a
small class of bound states that can occur.

Before we continue, a few words should be said on
what we mean by a composite particle. A composite
or elementary particle is not a fundamental concept of
nature. That is to say, nature does not have any
intrinsic property that gives us an absolute definition
of whether a particle is composite or elementary. The
concept arises from the interpretation of the various
theories and formalisms that are used to describe
nature. Therefore the concepts are functions of the
formalism and theories and not an inherent property
of nature. It may very well be that there are many
equivalent formalisms that can characterize our
universe. In one formalism a particle could be con-
sidered elementary, whereas in another it may be
composite. In the case of a Lagrangian field theory the
meaning of an elementary and a composite field is very
clear. We say a field is elementary if it explicitly
appears in the Lagrangian. If these elementary fields
do not form an irreducible set of operators, we must
add some new fields to make the set irreducible. These
additional fields we call the composite fields. This
definition is unquestionably a function of the for-
malism, as it must be. In fact, it has been shown in a
previous paper! that a particle may be considered
elementary for a particular Lagrangian, whereas an
equivalent theory could be constructed in which the
particle is composite.

The outline of the paper is as follows. In Sec. 1I
we define the notation and review some of the well-
known relations needed in discussing the properties
of composite particles. The most familiar class of
bound states is discussed in Sec. 1II. We refer to this
class as bound states of the first kind. This class of

5 K. Nishijima, Progr. Theoret. Phys. (Kyoto) 10, 549 (1953); 12,
274 (1954); 13, 305 (1955).

8 W. Zimmerman, Nuovo Cimento 10, 597 (1958).

7 R. Haag, Phys. Rev. 112, 669 (1958).

8 M. Gell-Mann and F. E. Low, Phys. Rev. 84, 350 (1951).

? B. Jouvet, Nuovo Cimento Suppl. 2, 941 (1955).
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bound states manifests itself as poles in the various
tau functions. Included in this class are those bound
states that are analogous to the ones in nonrelativistic
quantum mechanics. However, the bound states of the
first kind also contain less familiar types of bound
states and are broken up into subclasses exhibiting
common characteristics. Examples of Lagrangians
and Heisenberg bound-state operators are given for the
various kinds of bound states in these classes. In Sec.
IV we discuss that class of bound states which we refer
to as bound states of the Nth kind (¥ > 1). This
class of bound states manifests itself as branch points
in the tau functions. An example of this class of bound
states is given, where the spin-} particle appears as a
bound state of a spin-zero particle. Section V con-
cludes with the summary and conclusion.

II. NOTATION AND BASIC RELATIONS

In this section we introduce the notation and well-
known relations among the interpolating and asymp-
totic fields. This is done for both elementary and
composite fields.

Consider the elementary interpolating field ¢,(x).
In order to relate ¢,(x) to an asyn.ptotic field we
define

$) = i f BxfHx, D0hi(x, D, (1)
$2(1) = f BxUbg(x, Ddx, ), (1b)
STt = i f Bxdl (x5, Wes(x, ), (10)

using (la) if ¢,(x, t) is a scalar field and (1b) or (Ic) if
it is a spin-} field. ¢](x, ¢) is the Hermitian conjugate
of ¢,(x,1). fix,t), Upg(x,t), and Vpg(x,t) are
normalized solutions of the free field equations

@ + m)fy(x, ) = 0, )

. Ups(x, 1)
Y — PS 0. 2b
i ,){VPs(x’ t)} (2b)

The Upg(x,t) corresponds to the positive-energy
solutions and Vpg(x, ) corresponds to the negative-
energy ones. For all practical purposes we can limit
ourselves to the plane-wave solutions

filx, 1) = [(2m)*200, ] 22, (3a)
Ups(x, 1) = [m/@m°E,fu(P, Sy,  (3b)
Ves(x, 1) = [m(2mPE, (P, S)* "=,  (3¢)
where
(P — mu(P, S) = 0,
(P + myo(P, S) = 0, )
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and
w, = (k* + m)L.

Assuming the asymptotic condition to be valid,
for any two arbitrary eigenstates |«x) and |8) we have

Hm_ p ol $UO I8 = VZ, (ol Sl 18 (5)
t {—w} out}

where Z, is the wavefunction renormalization constant
of ¢,(x, 1). ¢! (i y are defined by the relation
out

é! n y = f ABxf*(x, t)80¢ ifin }(x ) (scalar fields),
(6a)

$¥n f AxUns(x, Dy (5, 1) (spin- felds),

Hn \ = f Al 10 OV pel, 1) (spin-} felds)
(6b)
where the in and out fields ¢, o t}(x, t) satisfy the free
field equations with the physical mass of the particles
o+ m; )95,{ }(x, 1) = 0 (scalar field), (7a)

(¥ — m, )qS,{ }(x t) =0 (spin-} field). (7b)

Equivalently, we may express the ficlds ¢, in }(x t) by
the relation

bugn 15,0 = f @kllyin 115 ) + Hin 11266 0]
(scalar fields), (8a)

bign 1 1) = f dPE[$fm \Urs 1)

+ ¢ }VP s(x, )] (spin-} fields). (8b)

The eigenvectors of the physical states can be
constructed by operating on the vacuum with the
creation operators ¢f { 3 At the loss of no generality

we will work with the in states and let % denote in
general either f, U, or V. Defining the physical vacuum
state |0) in the usual manner, the one-particle state is

la;) = ¢7ix 10)- ®

In general the N-particle state can be constructed

¢m+ |0>

If the set of operators {¢,} are irreducible, the
eigenstates constructed from the irreducible set will be
complete. As a consequence of the completeness of the

'l"»+ .

(10)
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eigenstates, we can construct the identity operator

I=3%la, - (11)

N=0

s A an, s s
where the sum is over the complete set of eigenstates.
In this case there are no bound states. However, if
such a completeness relation cannot be constructed
from the elementary fields, i.e., the set {1} is not
irreducible, then we must add a set of eigenstates
16,5, 1b, b;), 1b;,a;, b, ), etc., which will give us
the identity operator, i.e., a complete set of states.
The construction of such eigenstates is the essential
problem in understanding bound states.

The eigenstates containing composite particles can
be created by operating on the elementary eigenstates
with the bound-state creation operator B;. The
creation operator Bl is related to an interpolating
bound-state field B;(x, ¢; {; - - - {,) by an asymptotic
condition, A critical assumption is that the bound-state
operator By(x, t; {; - - - {,) can be expressed in terms
of some function of the elementary fields &;(x, ¢).
It is the form of this functional relation between
By(x,t; ;- -+ £,) and ¢(x, t) that will determine the
properties of the bound states.

Let us now consider the relation between the
bound-state operators B(x,?; {;---{,) and their
asymptotic fields as we have done for the elementary
fields ¢,(x, ?).

In terms of the interpolating fields B,(x, t; {; - -+ {,)
we define BI(t; {; - - - {,) by the equation

B{(t; Cls Tt Ty Cn)
—i f Prfl e, 09Bx, 154, -+, L), (122)

Bgv(t; Cl, o ',gn)
=fd3x UTP,s(x, DB(x,t;4,,° ", {w)

B,y(t;zl" : 'acn)
- f PxBl(x, 1500, -+, L)Vps(x, 1) (12b)

We use (12a) when bound state is spin-zero and (12b)
for spin-} bound states. Higher-spin bound states can
be treated in a similar manner.

The asymptotic condition for the bound states
becomes

lim, 1wy (@l BUO |B) = \Z; (o] Blpin 4 18), (13)
t_'{—ao} out}

whereas Z; is the wavefunction renarmalization con-
stant for the bound-state field B,(x, ¢); i.e.,

(Z)t = 2m)H(2Po)E (0] :B0): |b). (14)
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B 40 } satisfy the equation

out

B{{Elt}(ZI’ gz, Ty cN)

= i[5 D0Byn 05,156 L)
(spin-zero fields), (15a)

BiUin }(Cl, T, {n)
out.
= [@xUhs0, 0By 05,15+ o)
Btyin }(§15 e ’Zn)
out

= daxB;!‘ int}(x’ t; Cla Tt Cn)VP,S(x’ t)
(spin-} fields), (15b)

and the B, ;, , satisfy the free ficld equations with the

out
mass of the bound state

(O + m)B;in }(x, 586, ,0)=0
out (scalar field),

;) =0
(spin-} field). (16b)

II. BOUND STATES OF THE FIRST KIND

The most familiar and, in fact, the only type of
bound state that has been studied, with the possibility
of one or two exceptions,!:'® consists of those that
manifest their presences as poles in the various tau
functions of the elementary fields. We devote this
section to the investigation of this class of bound
states and refer to them as bound states of the first
kind.

To illustrate the appearance of the pole, which is a
general characteristic of this class of bound states, let
us consider an explicit example. Assume that we have
a local bound state of two neutral, possibly degenerate,
spin-zero particles. Let us now explicitly illustrate the
appearance of the pole in the simplest tau function

K(ey, ", xy)
= (0] T($1(x)ba(x2)h1(x3)da(x9) [0), (17)

where ¢, and ¢, correspond to real spin-zero fields.
Using the completeness relation in Eq. (11), we can
expand this tau function, so that

K(xy, "5 Xa)
% (Of T[h1(x1)bo(x2)] IN) (N| Thy(x1) $o(x2)]10),
for xjq, X20 > X305 X405
% O] T[y(x3)ba(x)] INY (N| T[(x1) b2(x2)]10),
for x39, X49 > X190, Xg9. (18)
10 B. Jouvet and J. C. LeGuillou, ‘“‘Particules Autocomposées,”

Preprint from Laboratoire de Physique atomique et moléculaire,
College de France, Paris.

(16a)
(iN — m)B; in \(x, 858y, -+
{out}

ou
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If there exists a single-particle composite eigenstate
|bymy,, P, g) with the quantum numbers of the fields
¢, and ¢, then for x4, Xz > Xg0, X540 WE Can separate
the contribution from this intermediate state and Eq.
(18) becomes

K(x1 ) x2 ) x3 s xl)
=3 f P (0] T [$1(x)ba(x2)] 1b; )
X {(q; bl T[¢1(x3)¢2(x4)] 10)
+ 3 (0l TI$y(x)Pa(x2)] INY (N| Thy(x5)$o(x)110),
N#b (19)

where ¢ denotes the possible degenerate states.
Introducing the notation for the Bethe-Salpeter
amplitude

Xo(x1, x5) = (0} T[¢1(x1)¢2(x2)] b5 ),

we have

(20)

X (%1, %) = P EE (x; — xy), 21
where

X, = (mx, + myx,) [(m, + my,)

and m, and m, are the physical masses of the particles
associated with the elementary fields ¢, and ¢,
respectively.

Using the property of translational invariance on the
tau functions and substituting Eq. (21) into Eq. (19)
we have

K(P;x,y)
=3 Up S 5. DV(Ps — [P* + (M, — iy}
+ terms regular at P, = [P? + M2}, (22)
where

K%y, Xg, X5 %) = f dPEPEIK(P; x, y). (23)

We see that a simple pole will occur in K(P; x, y) at
P, = (P2 + m2)} if X (x, y) is not identically zero for
some g. As a consequence of this pole we can obtain an
explicit equation for the Bethe-Salpeter amplitude.
This follows immediately from the integral equation

K(xy, X2, X3, Xg)
= A(x;, x3)A(Xg, Xg) + A(xy, x)A(Xz, X3)

+ fd4w1 e dbo, A(xy, ©1)AQkG, )

X Gy, 0y, 03, 0)K(wg, 04, X3, X, (24)
where

A(xy, x3) = (0] TPy (x)a(x2)) 10) (25

and G(w,, w,, wg, wy is the Bethe-Salpeter inter-
action kernel.
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Multiplying Eq. (24) by P, — P% + m? and letting
P, —P? + m?, we get a homogeneous equation for
the Bethe-Salpeter amplitude

X(xy, xg) = f Aoy d*o A(x, , 0)AG,, wp)

X G(wl » g, W3, w4)X(w3’ 6()4). (26)

If we know (a) the Bethe-Salpeter amplitude which is
obtained from a solution of Eq. (26), (b) the solutions
to all the tau functions for the elementary fields, and
(c) that we have a local two-body bound state com-
posed of the particles associated with the fields ¢, and
¢, (this we assumed to be true)—then we can, in
principle, determine all the matrix elements for the
bound states. The mass of the bound state is ascertain-
able from the position of the pole in the tau function.
Consequently, knowing (a), (b), and (c), we can
calculate all the properties of the bound states. In
general, we do not know (c) and, consequently,
cannot determine all the properties of the bound states.
The form of the bound-state operator cannot be
ascertainable by merely observing the properties of the
tau functions, but is a consequence of additional
assumptions. In the previous example we assumed
that we had a local two-body bound state. The deter-
mination of the form of the bound-state operator will
be discussed in a future paper, so no more will be said
about it here. We do, however, discuss the various
possible forms that can occur and their properties.

In the remainder of this section we divide the class
of bound states of the first kind into subgroups with
similar properties. These subgroups are characterized
by the form of their bound-state operators. We
consider the following subgroups:

(A) N-body bound states,

(B) mixed bound states,

(C) self-interacting bound states.

A. N-Body Bound States

This subclass is characterized by its bound-state
operator

B(X) =fd4w1, tT, ddth(x; Wy, Wg, """, wN)

X :¢i(wl)’ T <#l(wN):’ 27
where 2 < N < oo.

Because of the kernel A(x; wy, * - -, wy), this bound-
state operator is generally nonlocal. For the special
case that the operator is restricted to be local we get
the familiar form of an N-body bound-state operator

— :?S,-(X), T, ¢1(x): .
mH2PYE (0] :6,0), - - -, $,(0): |b)

B(x) (28)
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The C number (2m)}(2P,)} (0] :¢,(0), « - -, $,(0): |b)
is included in order to make the bound-state field
properly normalized.

The normal ordering sign : : is needed in order to
assure (0| B(x) |0) = 0. The product of the operators
on the right-hand side of Eq. (28) is at the same
space-time point, and in order to make them well-
defined it is implicitly implied that a limiting process
should be taken.

From the form of the bound-state operator in
Eqgs. (27) or (28), it is obvious why we say that this
bound state is composed of N elementary particles
described by the N fields ¢,(x), - - -, ¢y(x). It is this
subclass which is analogous to the familiar bound
state of atoms and molecules that occur in quantum
mechanics.

If we explicitly assume that we have an N-body
bound state, then we can determine which N fields
form the bound states by judiciously observing the
poles in the various tau functions. Its mass can be
determined from the position of the poles. If the form
of h(x; wy, -+, wy) is known, all other properties
can be established by solving the Bethe-Salpeter
amplitude and the tau functions for the elementary
fields.

In order to illustrate this type of bound state let us
construct a Lagrangian containing an N-body bound
state. We will do this by considering a Lagrangian
with an elementary particle and construct an equiv-
alent Lagrangian in which the particle is composite.

Consider the case of a pseudoscalar meson inter-
acting with a fermion by means of a Yukawa inter-
action. The meson and fermion are both considered to
be elementary and the Lagrangian density is of the
form

L(¢, 9, 9) = POIV + mo)p(x) + (N0 — pe)$(x)
+ goP(X)ysp(x)h(x). (29)

The tau functions for the fermi fields contain the
well-known poles at the physical mass of the pion.
By the method in constructed Refs. 1, 2, and 3, a
Lagrangian which will give the same value for the

tau functions of the fermi and antifermi fields and not
contain the boson is

Ly(y, §) = $(x)(V + mop(x) + gy

x f FOYspIAG — X)FE)Ysp(et) dxl,  (30)

where

iPH(a—a')
Mx =y = o [
Q2a)* ) P* + pg — ie

ROBERT L. ZIMMERMAN

The Lagrangian density in Eq. (30) does not con-
tain the boson field, so by our definition it is a bound
state relative to this Lagrangian. Its presence is
manifested by the appearance of the poles in the tau
functions of the elementary v, ¢ fields. A nonlocal
bound-state operator for boson can be constructed as
explained in Ref. 3, such that

f Ax — ) T0)ysp(y): d'y

B(x) = .
(2miapyt f A(=p) 01 :B)ysp(): [y d'y
3D
For special values of the bare mass and bare coupling
constants the Lagrangian density in Eq. (31) can be

made local, and in this case the bound-state operator
becomes

B(x)

- Py p(x):
= 7))
(27)°(2P,)" (0] :9(0)y59(0): 1b)

We therefore see that the Lagrangian density in
Eq. (30) can describe a boson as being a two-particle
bound state of a fermion and antifermion. Whether or
not the form of this bound-state operator is unique
is an interesting question which will be discussed in a
future article.

B. Mixed Bound States

Let us consider that subgroup of bound states which
are characterized by the operator

N

B(x) =‘z1hj(x; W1, ) (g, ilw)),

’ (33)
where 2 < N < o0,

This type of bound state is a generalization of the
N-body bound state. It is no longer possible to say
that the bound particle is composed of N elementary
particles, but it has become a mixture of various
combinations.

As is characteristic of the class of bound states of
the first kind, the mixed bound states will manifest
their presences as poles in the various tau functions.
The appearance of the singularities in many cases will
be identical to that of the N-body bound state,
and consequently by observing these singularities in
the tau function it is in general impossible to distin-
guish between N-body bound states and mixed bound
states. The knowledge of the bound-state operator is
necessary to describe all the properties of the bound
state. Therefore, to determine all the characteristics of
the bound state some additional information other
than the singularities of the tau functions is needed.
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In order to illustrate a Lagrangian having a mixed
bound state let us use the method of constructing
equivalent field theories.

Consider the Lagrangian density

L(¢y, ", $a)
= 34000 + mx)
+ £:61(0)[Po(X)Pa(x) + gado(X)Pa(x)hs(x)], (34)

where ¢,(x) is a real scalar field. We can now con-
struct an equivalent theory where the particle asso-
ciated with ¢,(x) is a bound state, i.e., the field ¢,(x)
does not appear in the Lagrangian.

For a particular choice of the coupling constants,
the Lagrangian density describing the composite
system is

L¢1(¢2 > ¢3 H ¢4)
= 31090 + M)
+ ALbbs) + ghs(BIBCIP. (35)

Since the tau functions of the elementary fields ¢,,
#3, and ¢, are equivalent, whether Eq. (34) or Eq. (35)
is used to evaluate them, the composite particle will
appear as a pole. Its renormalized bound-state
operator is

B(x)
H{Pa(x)Po(x) + gba(x) bs(x)ba(x)]:

QmE2PY (0] :[$2(0)$5(0) + 262(0)$5(0)(0)]: [0)°
(36)

We see that the bound state is of the mixed type.

C. Self-Interacting Bound States

This type of bound state is characterized by the
Heisenberg bound-state operator

B(x) = zhg(xa Wy, " "0, wa’) :¢z‘(w1), Y ¢1(wi):'
= (37)

This is just the generalization of the mixed bound
state with an infinite number of terms. This type of
bound state is unique from the subgroups A and B in
that the bound state effectively couples directly with
itself. To illustrate this direct coupling consider the
Lagrangian density

L(¢,,9) = 3(x)(0 — p)d(x) — P(x)(i¥ + mo)p(x)
— igeW(X)ysp(x)h(x) — A (x). (38)

This Lagrangian density describes an elementary
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meson, fermion, and antifermion. The elementary
boson is directly coupled with itself by means of the
Matthews term A¢(x)%. It is this direct coupling that
sets this type of bound state from the previous
examples.

The construction of the equivalent theory where
the meson appears as a bound state has been done
by the author.? The Lagrangian density corresponding
to the composite meson is

Ly(w, §) ~ =)V + me)p(x)
~ (+ 823 Pysy cos (Ga + 3m)

— 2 cost(he + 1) (39)
9g.
in the weak coupling limit, where
« = arc cos [27gie) F(xyysp(x)].  (40)

In the strong coupling limit we get

Ly(#, ) ~ —Px)(¥ + me)y(x)
+ (83128 ()75 p(x)
x {cos [20(x)] + iy/3 cot [2a(x)]}

— L fese ()] + i3 cot [2a(x)1}’,
36g,

4n
where
tan a(x) = [tan $8(x)]F (42)
and
sin B(x) = [4/Q7g:g) Iy (43)

The form of the bound-state operator in the weak
coupling limit is

B(x) ~ :{const X cos [fa(x) + 3]

const
P(x)ystp(x)
where «(x) is defined in Eq. (40). Notice that for
A—0, Eq. (44) for B(x) reduces to Eq. (32).
In the strong coupling limit the bound-state operator
is of the form

B(x) : const X cos [2a(x)] + i\/i_i cot [2a(x)]
— s const [§(x)ysp(x)] ™ {esc [2a(x)]
+ 3 cot [2a(x)1}}, (45)

where a(x) is defined by Eqs. (42) and (43).

The bound-state operators in Eqs. (44) and (45) are
both of the form of Eq. (37). The meson will manifest
its presence as poles in the tau functions of the elemen-
tary fields. As before, it is not possible to construct the

x cost [Ja(x) + %ﬂ}:, (44)
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form of the bound-state operator by merely observing
the singularities in the tau functions. The only reason
that we were able to construct the bound-state
operators was because of the privileged knowledge of
both the elementary and composite Lagrangian in
addition to some implicit assumptions that were not
discussed.

From what we have said we can epitomize the class
of bound states of the first kind by saying:

(a) The set of elementary fields ¢, ¢y, -, Py
that appear in the Lagrangian do not form an irre-
ducible set.

(b) The bound-state operators By, By, ', By
that are needed to make the eigenstates complete can
be expressed in terms of the elementary fields.

(c) At least one Bethe-Salpeter amplitude is not
identically zero:

O T($1(x1), -+, dulx)) 1B) #£ O

for some combination of fields.

(d) As a consequence of (c) the bound state will
manifest itself by the appearance of poles in various
tau functions. Consequently, a homogeneous equation
for the Bethe-Salpeter amplitude can be derived.

(e) The form of the bound-state operator can not
be ascertained from a knowledge of the tau functions
alone.

IV. BOUND STATES OF THE Nth KIND

In the previous section we considered the class of
bound states that appeared as poles in the tau func-
tions, i.e., bound states of the first kind. Because of the
pole we could isolate its residue and obtain an explicit
equation for the Bethe-Salpeter amplitude [cf. Eq.
(26)]. Knowing the Bethe-Salpeter amplitude, the
tau functions for the elementary fields, and the form of
the bound-state operator, we could, in principle,
calculate all the properties of the bound state. For the
pole to exist it was necessary that

O T(@1(x1), " * + » ulxg)) [b) £ O (46)

for some combination of fields ¢,(x). If Eq. (46) is
identically zero, the pole does not appear but the
bound state may still exist. It now manifests its
presence as a branch point in the tau functions. It is
this class of bound states which appear as branch
points in the tau functions that we consider in this
section.

The bound states that appear as branch points are
much more complicated than bound states of the
first kind. Apart from their difficulties, these types of
bound states are extremely interesting because of the
possible new kinds of theories that can be considered.
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For example, with this type of bound state it is pos-
sible to construct theories where a spin-} particle
appears as a bound state of an integer- or zero-spin
field. The customary procedure is just the opposite,
i.e., to construct integer-spin particles from spin-}
particles. It is for this reason that these bound states
are very enticing regardless of their complexity.

These bound states that appear as branch points can
most readily be broken into classes with similar
properties. These classes, being generalizations of
bound states of the first kind, are here designated as
bound states of the second kind, the third kind, or in
general the Nth kind.

Let us begin with a discussion of bound states of
the second kind. As the bound states of the first kind
were characterized by the statements (a)-(e) at the end
of Sec. III, the bound states of the second kind are
characterized by a similar set of requirements:

(a) The set of elementary fields ¢,, -, ¢y that
appear in the Lagrangian do not form an irreducible
set.

(b) The bound-state operators B,, B,, -, By
that are needed to make the eigenstates complete can
be expressed in terms of the elementary fields.

(c) For all eigenstates |b;) and all combinations of
elementary fields

©] T(¢1(xl)a T, ¢k(xn)) 16, 0.

(d) For some combination of elementary fields and
some two-particle eigenstate |b;, b;) we have

Of T(ps(x1), * =, Si(x,0)) 16, b;) # 0.

As a consequence of these properties, in particular
(c) and (d), the bound state of the second kind will
manifest itself as a branch point rather than a pole.
This fact is easily illustrated by the example in Eq. (22).
If X"(x,,x,) =0, then the next contribution to
K(x,, x5, X3, x,) is the two-particle intermediate state.
The contribution is proportional to

O] T(b1(x)ba(x2)) 10, bs)

lying in the continuum and giving rise to a branch
point, and the position of the branch point is depend-
ent on the mass of the bound state.

The difficulties of the bound state of the second
kind, and so for that matter of the bound state of the
Nth kind (¥ > 2), are immediately apparent when
one considers the calculation of a general matrix
element

(o T(po(x1), * -+, d(x) 1), 47

where («| and |8} are two arbitrary states. In the case
where we had only bound states of the first kind, this
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matrix element could be evaluated, since the bound
state produces a pole which allows one to explicitly
express the general matrix element [Eq. (47)] in terms
of the Bethe-Salpeter amplitude and tau functions for
the elementary fields.!! For the bound states of the
second kind we have no pole term and consequently
cannot carry out the analogous calculation. Closely
related to this difficulty is the ambiguity that arises in
constructing the properties of the one-particle eigen-
state |b), since, in general, the only nonzero matrix
elements that appear are those with an even number of
bound states, e.g.,

O] T(#x)$(y) 1b) = 0,

O] T(p(x)¢(») |6, b) # O,

O] T($(x)$(») 16, b, b) = 0,
O] T($(x)(»)) |b, b, b, b) # 0,

(48)

et cetera.
This will, in general, be due to the conservation
numbers that force the matrix element

©f T($(x)(»)) 1b)

to vanish. Therefore the quantum numbers of the
bound states are only determined for, at most, the
product of two bound-state operators.

In order to illustrate these ambiguities and difficul-
ties we consider an explicit Lagrangian density with a
bound state of the second kind. We can do this as
before by means of constructing an equivalent field
theory. The example we do consider is a spin-}
fermion as a bound state of the scalar = meson. The
Lagrangian density in which both the fermion and =
meson appear as elementary particles is assumed to be

L(, v, P)
= =PV + mp(x) + (N0 — pp)d(x)
+ gP(X)'p(x), (49)

where I' is either a scalar or pseudoscalar gamma
matrix. As explained in Ref. 1, the equivalent La-
grangian L, ;(¢), where the spin-} field appears as a
bound state, can be obtained from the expression

f d*xLy,o(4) =f"‘x%{¢<x>(m — W)}

— 3trin (1 + 2g,S¢), (50)
where

S(x! — x) = (V1 + mpA(x! — x).

The Lagrangians in Egs. (49) and (50) yield the same
tau functions for the scalar field ¢(x). However, in Eq.
(50) the fermi field does not appear and consequently
by our definition is designated as a bound state. It is

11 §. Mandelstam, Proc. Roy. Soc. (London) A233, 248 (1955).
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also true that if [b) represents the one-particle eigen-
state of the bound fermi field then

O T($(x1), =+ -, $(x,)) [2) = 0 (5D

for all » and arbitrary eigenstates |«) that contain an
odd number of fermions. This is just due to the fact
that [«) must have a noninteger-spin eigenstate and
¢ is a scalar or pseudoscalar field. On the other hand,
the eigenstate for the product of two spin-} fields
{b, b) has a scalar representation and consequently

O] T(h(x1), -+ » $(xx)) |bb) % O

if all the other quantum numbers are in agreement.
Therefore, the Lagrangian density in Eq. (50) con-
tains a bound state of the second kind.

Notice that just given a Lagrangian with a bound
state of the second kind we have no way of deter-
mining the quantum numbers of the one-particle
eigenstate |b). The quantum numbers are only deter-
mined for the two-particle eigenstates |b, b), the matrix
elements containing one-particle eigenstates identically
vanish. For example, in the above illustration the only
way we know that [b) was an eigenstate of spin § is our
privileged knowledge of its equivalent field theory
described by Eq. (49). In general, this information is
not available.

We can now generalize the previous definitions to
include bound states of the Nth kind. We say that a
bound state belongs to the Nth kind if:

(a) The set of elementary fields ¢, -, ¢y that
appear in the Lagrangian do not form an irreducible
set.

(b) The bound-state operators B;, * - * , B, that are
needed to make the eigenstates complete can be
expressed in terms of the elementary fields.

(c) For all eigenstates |b;) and all combinations of
elementary fields,

<0| T(¢1(x1)’ T, ¢k(xn)) |b1> = 0’

also for all combinations of two-particle eigenstates
|b;, b;) and all combinations of elementary fields,

Of T($i(x1), "+ *, $(x,)) 16, by) = 0;

and in general for all combinations of eigenstates
|b;, -+, b;) up to N — 1 particles,

<0| T(¢1(x1), T, ¢s(xn)) |b15 o

for all combinations of elementary fields.
(d) For some combination of elementary fields and
some N-particle eigenstate |b,, - - * , b;), we have

<0| T(‘ﬁl(xl), R qsa(xn)) lbi9 T, bJ) ¢ 0.

(52)

7bi>Eo
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The bound states of the Nth kind (N > 3) exhibit
the same difficulties as bound states of the second kind,
yet with even greater ambiguities.

A further exploration of the properties of the bound
states of the Nth kind (N > 2) does not seem worth
the effort at the present time until the more obvious
difficulties are better understood.

V. CONCLUSION

In the previous sections we have discussed the
properties and kinds of bound states that can occur in
quantum field theory. We do not intend to imply that
we have exhausted all possibilities; rather, only the
more obvious types. Also we have by no means
exhausted the characteristics and problems associated
with the bound states; quite to the contrary, we have
raised more questions than we have solved. In
particular for the bound states of the second and higher
kind, we could have broken these classes up into
subclasses as was done for the bound states of the
first kind. The complexity of the problem did not
warrant such a discussion until some of the more
practical difficulties with these bound states are
pursued.

Under the bound states of the first kind we con-
sidered three subclasses. The first class, N-body bound
states, are the most analogous to ordinary quantum
mechanics. Although the classical picture of N
clementary particles being bound by an attractive
force is not valid, we can identify the N-body com-
posite state to be composed of those N particles that
are associated with the Heisenberg bound-state
operator [cf. Eq. (27)]. In the case of the mixed
bound state we can no 18nger say that it corresponds
to a bound state of N particles. It is a mixture of
various combinations of particles, the last subclass
being the self-interacting bound state. If it is indeed
the case that the = meson is to be treated as a bound
state and has a self-interaction (i.e., the Matthews
term) then this subclass is very important. We see,
however, that the problem becomes much more
complex for self-interacting bound states.

It is important to notice that just given the knowl-
edge that the bound state appears as a pole in the
tau function is not enough to determine all of its
properties. That is, one cannot tell to which subclass
the bound state belongs, and consequently one cannot
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determine all of its properties. To construct such a
bound-state operator is not a trivial problem but a
necessary task, if one is to have full knowledge of the
composite particle such as is needed in discussing
composite-particle scattering. This problem will be
studied in a future article.

There are a few special examples in which the
construction of such a bound-state operator is trivial,
that is, in those cases where the bound-state theories
have been constructed from an equivalent theory
where the particle was elementary. This was the case
for all the examples considered in this paper. How-
ever, given a theory with a composite state that has
not been constructed from an elementary state, the
form of the bound-state operator is not apparent
and it is by no means a trivial task to determine it.
Such examples are the form of the bound-state
operator describing the V' — 6 bound state!? in the
Lee model or the deuteron bound state. It is always
assumed that the deuteron is a two-nucleon bound
state, but this need not be the case.

Taylor'® and Weinberg!* have both given procedures
for replacing composite particles by elementary ones.
They have limited themselves to bound states of the
first kind. Furthermore they have assumed that the
composite state belongs to the N-body subclass.
This assumption is completely arbitrary, and in order
to replace the composite state by an elementary one
the form of the bound-state operator must be known.

The bound states of the second and higher kind
allow us, in principle, to construct bound-state
theories of a larger class. We need no longer assume
that the fermi fields occupy a unique fundamental
position. A position taken, for instance, in construct-
ing the Heisenberg nonlinear theory but in no way
dictated to us from the intrinsic properties of nature.

It is apparent that the Lagrangian for these higher
kinds of bound states are very complex. However,
it is not apparent that they cannot be simplified in such
a way as not to destroy the characteristics of the
bound state. This task must surely be accomplished
not only for the higher kinds of bound states,but also
for bound states of the first kind if field theory is to be

of any utility in constructing composite theories.

2 R. D. Amado, Phys. Rev. 122, 696 (1961).

13 M. M. Broido and J. G. Taylor, Phys. Rev. 147, 993 (1966).

14 8. Weinberg, Proceedings of the 1962 High Energy Physics
Conference, CERN, Geneva.
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A new scheme for analyzing the scaftering amplitude in the s channel of a two-body elastic collision in
terms of the representation functions of the covering group of the homogeneous Lorentz group is
presented. The scheme uses representation functions defined on the homogeneous space SL(2, C)/SU(2),
which for the equal-mass case considered here is the same as the hyperquadric q* — g2 = —m?, where
m is the particle mass, q is the relative center-of-mass momentum (in the initial or final state), and
2g, = st is the center-of-mass energy. The corresponding representations are multivalued and belon
to the so-called degenerate (but not most-degenerate) series. The scattering amplitude derived has the

correct threshold behavior in the s variable.

1. INTRODUCTION

Recently, a number of authors! have generalized
Toller’s idea® of using the representation of the Lorentz
group instead of those of the rotation group for partial-
wave analysis. The idea of the generalization is to
make Toller’s scheme applicable to directions of
scattering other than the forward.

One feature common to the classic Jacob-Wick
expansion and these extensions is the use of the scalar
product between ‘“‘plane-wave” states (or linear-
momentum states) and the angular-momentum states.
This scalar product turns out to be expressible in terms
of the representation matrices of the rotation group
in the Jacob-Wick case and of the homogeneous
Lorentz group in the Toller-like extensions. It appears
that one could sometimes dispense with this scalar
product and derive an expansion of the Jacoband Wick
amplitude in terms of the basis functions of a unitary
irreducible representation of the Lorentz group or,
rather, of its covering group.

In this paper we propose a simple scheme which
literally translates the physical situation into mathe-
matical language.

We consider a two-body elastic collision

Py

</‘7 pl
p‘ SN — p2

with four-momenta p,, p,, incoming, and —pg, —p,,
outgoing, and with all masses equal to m for simplicity.

* On leave from Department of Physics, University of Ghana,
Legon.

! G. Domokos and G. L. Tindle, Phys. Rev. 165, 1906 (1968); R.
Delbourgo, Abdus Salam, and J. Strathdee, Phys. Rev. 164, 1981
(1967).

2 M. Toller, Nuovo Cimento 37, 631 (1965); Internal Reports,
University of Rome, Nos. 76 (1965); 84 (1965); A. Sciarrino and
M. Toller, J. Math. Phys. 8, 1252 (1967).

The scattering amplitude may be written f(6, ¢), as
in Jacob and Wick’s paper,® where 8, @ are the usual
spherical angles with @ azimuthal. We note that these
authors expand this amplitude in terms of the functions

,{M(2B), which are the harmonic functions for the
group SU(2),* the covering group of the rotation
group. One expects then that a natural extension of
this expansion to one that uses the representation of
the Lorentz group would involve the use of the
harmonic functions for the group SL(2, C), the cover-
ing group of the Lorentz group.

As far as partial-wave analysis is concerned, a simple
chain of inclusions, P,,,(0) < d] (20) < - - - , within the
family of the harmonic functions would then be set up.

Now the (physical) s channel is unambiguously
defined by the (mathematical) relation

s = (p1 + po)* = (290)* > 4m?,
t=(p+pa)? <0, (1.1)

where 24, is the center-of-mass energy and is positive.
For the equal-mass case which we consider we have

s = 4(q% + m?), (1.2)

where q is the relative center-of-mass momentum.

The relation s < 0 has a two-fold ambiguity only to
the extent that it refers to both the ¢ and the u channels.

In the physical channel one has to use wavefunc-
tions for which s = (2¢,)? > 0. One also constructs the
scattering amplitude to be a Lorentz-invariant. Put
in mathematical language, the scattering amplitude is
a linear combination of functions defined on the
space s = (2g,)®. Such a space is easily constructed.
The corresponding functions span a Hilbert space.
They are the so-called harmonic functions of which
Py(cos 0) and dj,(20) are the first two examples.

3 M. Jacob and G. C. Wick, Ann. Phys. (N.Y.) 7, 404 (1959).

* R. Raczka and J. Fischer, Commun. Math. Phys. 3,233 (1966);
M. A. B. Bég and H. Ruegg, J. Math. Phys. 6, 677 (1965).

519



520

2. THE s CHANNEL AS A HOMOGENEOUS
SPACE

From the relation

s =4(q* + m?),
we have

@.1)

With m fixed, (2.1) allows for the joint variation of
lq] and s.

We denote the hypersurface defined by (2.1) by S.
It is probably well known that this surface is homeo-
morphic to the homogeneous space

SL(2, C)/SU(2).

¢ —qgi=—m’ ¢,>0.

Nevertheless, it may be instructive to prove this here,
more so as our proof is really simple.

Suppose f, g are two matrices of SL(2, C), that is,
matrices of the form

a b
c 14 bel,
a

where a, b, ¢ are arbitrary complex numbers and
a # 0. Then the elements of SL(2, C)/SU(2) are the
cosets of SU(2) in SL(2, C). These are characterized
as follows: f, g lie in the same coset of SU(2) if and
only if f~1g € SU(2), i.e.,

if and only if B7Tf T8g € SU(2),
where /T denotes the transpose of f and

01
b= (-—1 0)'
It follows that

(B "62)'Bf g = 1, @3
where 1 is the adjoint (or Hermitian conjugate) oper-
ation.

Hence

2.2

g8 TfThg = 1,

ffl=gg" =K, say,

where K is a Hermitian matrix

k, kz)
(k: ks’
where k,, k3 real and positive and k, complex.
Conversely, if ff* = gg', then f, g belong to the
same coset of SU(2).
The cosets of SU(2), i.e., the elements of SL(2, C)/

SU(2), are therefore represented by the points k,,
k,, ky. These numbers are, however, not independent

ie.,
2.4
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because K must be unimodular. Thus we must have
kiksg = ko2 4+ 1. 2.5)

Suppose now that y, z are two complex numbers and
do> 92 two real numbers and m a real and positive
number.

Let us put
Re ky, = |yl/m = q,/m, say;
Imk, = |z|/m = g3/m, say;
2 = 2]/ qs/ y 2.6)
mky = qo — qs;
mky = qo + qa.
Then (2.5) becomes
Q@ — g5 = —m’,
2go = m(k;, + ky) > 0. Q.E.D. (2.7)

In deriving Eq. (2.7) for the hypersurface S =
SL(2, C)/SU(2), we have allowed y, z to be complex
in order to reduce the degeneracy of the representations
later to be constructed on S. It is, however, to be
understood that the physical components of momen-
tum are given by q; = |y|, ¢; and g3 = |z|. The phases
introduced by the complexification of y and z are
therefore to be regarded as unphysical.

The space S is conveniently parametrized as follows:

my =x, + ix, = 2“%e"‘”1 sin 0 sinh «,
mlg, = x; = 2% sin 6 sinh «,

-1, __ . — piP2 1
m~lz = x; + ix, = €**cos 0 sinh «, (2.8)

m~'q, = x4 = cosh «,
OS‘P1S2W, 0 < s < 2m,
0<a< oo,

Mathematically, 6 is a free parameter and simply
measures the inclination of q with respect to arbitrarily
chosen axes. With a judicious choice of these axes,
we may (physically) identify 6 with the s-channel
center-of-mass scattering angle, usually written 0,.
Another way of putting this is to note that ¢2 is the
same for initial and final states, so that in (1.2) we
could substitute (q")® for q2, where q' is the final state
relative center-of-mass momentum. This operation
then ties up the dynamics of scattering which involves
the momentum-transfer variable ¢, with the kinematics
supplied by s and other initial conditions.

The metric on S is induced by the metric g,,(E})—
for a positive-definite line element ds® = x,g,4x;—o0n
the six-dimensional pseudo-Euclidean space E}. This
is given by

0<0<7f2,

6
gzﬂ(s) = z gkl(E;)aaxkapxl’ o, ﬂ = 1’ 23 3’ 4; (29)
k=1
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where
d aﬁ (ﬂ = 1’ 2’ 3’ 4) = (aqpls a¢z5 ao s au)
an
~1
—1 0
—1
glcl(Eé) =
-1
0 —1
1
(2.10)
Hence,
} sin? 6, sinh? « 0 0 0
0 cos? 8, sinh? « 0 0
—o(S) = ’
56) 0 0 sinh?a 0
0 0 0 1
@.11)

(&)} = (Idet g(S)P¥ = } sin 0, cos 0, sinh? a.
3. THE HARMONIC FUNCTIONS

The harmonic functions are eigenfunctions of the
so-called Laplace-Beltrami operator

A(S) = (@ 0.8(5)(@)*05., (3.1)
where the g*#(S) are the matrix elements of g($)~L.
From (2.10), (2.11), (2.12), and (3.1) we obtain

4

sinh® «

(2.12)

9 sinh® « 9 _ , 32

sinh® o Ju Ju

AGS) = —

where

0= 1 is1r10 cos 6, —

7]
sin 6, cos 6, 20, ° 90,
L2, 2
cos®0,0¢%  sin®0,9¢%

(3.3)

As usual, we chose the ¢ dependence of the eigen-
functions of A in the form

exp [i(p 1 + pe@2)]

The constant u, we take as an integer m,, so that the
eigenfunction is single-valued in ¢,. With regard to
@1, however, we are forced by (later) physical con-
siderations to choose g, = m,/(2)}, where m; is an
integer. The eigenfunctions are therefore multivalued
in ¢,. This is why we must work in the range 0 <

< 2m. The numbers yu,, u, are subject to a con-
straint u, + u, = M, where M is an arbitrary number.

The operator d then has the eigenvalues —2j(2j + 2),
where 2j is an integer, and eigenfunctions

\F(os s P1s ‘Pz) = Nei[ml(Z)_*‘Pl'sz(Pz]
d;"m-mz),i‘(mﬁm,)(zes) (3.4
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where d],(20,) is defined as in Ref. 5, i.e., in terms of
Jacobi polynomlals P2b(cos 0,):

il (20) = [F(j +m + OOG —m' + 1)}*
' FG+m+DI'G—m+1)
x (cos 0,)™*™(sin 6)™ ™

X Pmommtmicos 20,).

(3.5)
Finally, we have to solve the eigenvalue equation

2j(% + 2)] V()

d
— sinh® « +
. sinh?

AV = [ sinh® o dot do
= AV(%). (3.6)

An equation of this form has been studied by Limi¢,
Niederle, and Raczka® in connection with the con-
tinuous most-degenerate representations of the group
SO(4, 1). Their results indicate that A has only a
continuous spectrum:

A=—=-At—2 0L A<, 3.7
The (normalized) eigenfunction ¥ is given by
V@) = K~ tanh® a coshirF «
X oF1(j — A — 3),j — 3GA — 9);
2j + 2; tanh®* ), (3.8)
where

_ @mPTGAT() + 2)
TG + 3GA + TG + 36A + )|

(3.9)

The normalization of the functions W(6,, ¢,¢,),
V{(«) is carried out with respect to the invariant
measuressin 0, cos 6, df, dp, dp, and sinh® « d, respec-
tively. The harmonic functions form an orthonormal
set of functions.

4. THE SCATTERING AMPLITUDE

For-a two-particle system with incoming helicities
As» 4, and outgoing helicities 4., 4, the scattering
amplitude is a square-integrable junction on S,
provided we assume a finite total cross section which
goes to zero at s — co. It may then be written as a
linear combination of the harmonic functions on S:

f zczd,z,,z,,(o oc)
,ll dAZ<J+f><chmm,,>

X Vj(a) d%(ml—mz),%(m1+mz)(26.9)’ (41)

5 A. R. Edmonds, Angular Momentum in Quantum Mechanics
(Princeton University Press, Princeton, N.J., 1957).

“N) Limié, J. Niederle,and R. Raczka, J Math. Phys. 7, 2026
(1966
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where My = Ao — Ag 4 A — Ay,
m2=}'c_}'a+lb_ld’

sinh « = |q|/m, cosh a = st/2m,

and j is the angular momentum. The quantity C** does
not depend on s.

We have factored out (j + §)/|q} so as to put the
expansion in a form analogous to the Jacob-Wick
expansion.

We have also averaged over the unphysical angles
P15 Pa.

It is the fact that m,, m, turn out to be linear com-
binations of the helicities that constrained us to use the
multi-valued representations.

If we compare our expansion (4.1) with the Jacob-
Wick expansion

FroraanEr0) = I—;—,zju + ) (Rokal TAE) | ) d1,(0),

A=dy— Ay, p=12—4, (42)

we see that, assuming that the order of integration and
summation may be interchanged in (4.1),

TXE) =f dA. CAVX(w). 4.3)
0

We thus have an explicit analytic form for the energy

dependence of the scattering amplitude. The function

C*A is of the form of a form factor in A space. It must

be of such a form as to ensure the convergence of the

integral.

Let us take a quick glance at the analytic structure
of VA(«) as a function of s.

First we note that its ,F, component is a single-
valued analytic function of tanh? « (=1 — 4m?/s) in
the whole (complex) tanh? « plane with a branch cut
along the positive real axis from +1 to + co. This cut
thus corresponds to s < 0. This is the usual left-hand
cut of the elastic scattering amplitude. One would
obtain the right-hand cut by analytic continuation into
the complex s plane. For the analytically continued
amplitude, one expects a cut from s = +4m® to s =
+ 0. Our amplitude T?(E) would be the boundary
value (from above) of this analytically continued
amplitude.

Let us also consider the asymptotic behavior of
T(E) as s goes to infinity,” i.e., as tanh® « — 1.

In this limit, the series for .F,(a, b; c; tanh? &) is
absolutely convergent if and only if

Re(a+b—¢c)<0.

7 This is to be considered a mathematical limit, since physically
such a limiting process would open up inelastic channels and our
expansion would break down.
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For the function ¥(a) this corresponds to
Re(j—3A—-D+j—¥A-H—-2j-2)

= Re (—iA) =0,
irrespective of the value of j. Thus using the formula

oFy(a,b;c;1 —¢€)
_ T T@+mb+nmd—e"
T I(b)(a)amo  T(c + n) nt
1>Re(@a+b—¢) 20,
c#0,—-1,~-2,:---,¢>0,

we have

, s -1 ro il s iA/2
T(E) ~ (Zn?) ﬁ dAC (4—m,)

« I'(2j + 2T'(4 + iA)
PG+ B+ iAQTG + 2 +iA2)

That is, T/(E) goes to zero at least as s—f. For the
reason given in Footnote 7, this is only of mathe-
matical and not of experimental interest.

What is of experimental interest is the behavior at
small s, i.e., the so-called threshold behavior.

Thus for s = 4m*(1 + ¢), € a small parameter,

(4.5)

(4.4)

tanh®a = 1 — dm¥fs ~ €
and
oFy(a, b; c; tanh? &) ~ 1 + (ab/c) tanh? a.

Then,
e =f “dn CARA(L — mfs)(slamty et
0

(4.6)

x {1 + (1 — 4m¥s)

2 +2

= x5 — l)z’fwdA F(jA) exp (12.‘} In x)
0

X (1 + xx—1)
% G+ 1) - —AY4—i(j + I)A)’

2+ 1
4.8)
where
x=s/dm*=1+¢
and
F(jA) = C**K* 4.9)

Since x is close to 1, exp (A In x) is a slowly varying

8 W. Magnus, F. Oberhettinger, and R. P. Soni, Formulas
and Theorems for the Special Functions of Mathematical Physics
(Springer-Verlag, Berlin, 1966), p. 37.
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function of A; its period 4n/In x is almost infinite!
We may therefore set it equal to 1 as a first approxi-
mation. Furthermore, F(jA) is of the nature of a form
factor in A space. We cannot determine its exact form
within the context of this general theory. To do this
one has to bring in such other constraints as unitarity
and crossing on the scattering amplitude. A (mathe-
matically) desirable form which it should have would
be the Gaussian form

exp [—A%/a())], (4.10)

where a(j) is some function of j. The A integra-
tion would then be trivial. In any case, with the
exp (—iA In x) term disposed of as we indicated, we
can study the s behavior of T%(E) and hence of
the differential cross section

sTE| ¢

do
dQ
without carrying out the A integration. The two terms

of (4.7) give a variation of TY(E), with s of the forms

= x—i—”(x — 1)25
and
Yo = x—i—zj—l(x —_ 1)21+1’

respectively. Now,
dy, _ [—(% +2) , 2
dx X x—1

Thus, since x > 1,

]x—*-“(x — Y. (4.11)

dy, >
—20
dx <
according as *
& 2% o 3+2
< ’
x—1 X
i.e., according as
xs1+3%j 4.12)
Similarly
dys 5 0
dx
according as
xS14+32+1). (4.13)
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Ti(E)

s=1 S _ >

F1G. 1. General form of s dependence of partial-wave amplitude
T#(E). The hump in the j = 0 curve would be absent if we used only
the leading term in (4.8).

It follows that the scattering amplitude has the
threshold behavior indicated in Fig. 1, which is the
correct one. One cannot make any definite dynamical
predictions without studying the detailed form of
F(j, A) and without effecting the A integration. This
problem is being studied.

Let us conclude with a remark on crossing and
reggeization. When one goes to the crossed channels,
one has s < 0, ¢ > 0; 5 <0, u> 0. One would again
derive an expansion in terms of harmonic functions
as before, using spaces defined by £ > 0 and by u > 0,
respectively. Analytic continuation from one channel
amplitude to another is then quite straightforward.
If one then wishes to “reggeize”” one would do so
simply by executing the integral { dA as a contour
integral. One does so by suitably closing the contour
in a complex A plane. One would then pick up poles of
T in the A plane. These poles are expected to be
subject to some constraints of the form f(A, ) = 0.
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The infinite series, absolutely convergent if {x] + |yl < 1, for Appell’s F; («, f, 8, ¥, ¥'; x, y) is analyti-
cally continued into a linear combination of four infinite series in powers of (x — 1) and (y — 1); each of
the latter four series is absolutely convergent if [x — 1| + [y — 1| < 1. The analytic continuation is
carried out by manipulation of the Mellin-Barnes integral representations for the hypergeometric

functions appearing in the course of the calculation.

I. INTRODUCTION

Appell’s hypergeometric series F,, which is a
function of two complex arguments x and y, and of
five complex parameters «, 8, #', y, and ¥ (y, ¥" # 0,
—1, =2, -+ ), is defined as follows!-2:

Fz(d" ﬂ’ ﬂ” Vs 7,; X, y) =mz=0 n=0%—m xmyn,

M
where the symbols of the type (d),, are given by
Ia 1, if m=0,
(5)m=_(__+_m)= dO+1)-(+m—1),
[(9) ‘
if m=1,2,---,

The series (1) converges absolutely for [x] + |y| <1
and, in general, diverges for |x| + |y| > 1.1-2

In calculations related to certain physical prob-
lems,3-4 the need may arise for analytic continuation
of F, into a series that is convergent in a neighborhood
of the point x = 1, y = 1. Borngésser® obtained series
expansions, in powers of (1 — x) and (1 — y), of the
four linearly independent functions that are solutions
of the system of partial differential equations satisfied
by F,. Formulas for the analytic continuation of
Appell’s F, to a neighborhood of x =1, y = 1 were
first given by Olsson.® Subsequently, more results
were presented by Almstrédm and Olsson.”, The con-
tinuations of Olsson were derived with the aid of

1 P. Appell and J. Kampé de Fériet, Fonctions hypergéométriques
et hypersphériques; polynomes d’Hermite (Gauthier-Villars et Cie.,
Paris, 1926), pp. 13-19.

® Higher Transcendental Functions, Vol. 1, A. Erdélyi, Ed.
(McGraw-Hill Book Company, Inc., New York, 1953), pp. 222-229.

3 L. C. Biedenharn, J. L. McHale, and R. M. Thaler, Phys. Rev.
100, 376 (1955).

4 K. Alder, A. Bohr, T. Huus, B. Mottelson, and A. Winther, Rev.
Mod. Phys. 28, 432 (1956).

5 Ludwig Borngisser, ‘“Uber hypergeometrische Funktionen
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manipulations of series and of the use of an integral
representation of Euler’s type for a function appear-
ing in the calculation. In the present work, the vehicle
for carrying out the desired continuation of F; is the
Mellin-Barnes type of integral representation for
hypergeometric functions, and an application of
Barnes’s lemma provides the essential simplification
that makes the calculation feasible.

II. ANALYTIC CONTINUATION OF F, TO THE
VICINITY x =1, y =1

Appell’s hypergeometric function F, may be ex-
pressed in terms of a Mellin-Barnes contour integral
as follows®:

Fo(a, B, 8, 7, 7'5 %, ¥)
_ o) 1
()P 2mi
DG+ 00@ + 9
'y + 9
where F(a + ¢, §; v; x) is Gauss’s hypergeometric
function.® In (2), the contour in the ¢ plane parallels
the imaginary axis, except that, where necessary, it is
indented so that the poles of I'(a 4+ £)I'(8" + ¢) all lie
on the left-hand side of the contour, and the poles of
I'(—1) all lie on the right-hand side. From the asymp-
totic behavior of I'(¢ + ) for large |¢| and fixed ¢,1°
and of F(a + ¢, §; y; x) for large |t|, and for fixed
«, B, v, x, and arg (¢) (see Appendix A), it may be
concluded that the integral in (2) converges absolutely
ify #0,x # 1, and if |[arg (—y)| < 7, Jarg (1 — x)| <
m,and |arg (—y) — arg (1 — x)| < =. All of the above
conditions can be satisfied if both Im (x) > 0 and
Im (y) > 0, or if both Im (x) < 0 and Im (y) < 0;
one of these two sets of conditions is assumed to hold
until further notice.

—k+ic0
f Fla+t,8;7; %)

—k—ioo

T(=(—=y)dt, (2)

8 Reference 1, p. 40.
9 Reference 2, p. 56.
10 Reference 2, p. 47.
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Barnes''12 has established the following integral iterated integral which yields
representation for Gauss’s hypergeometric function: .,
p Fz(“,ﬁ,ﬁs%V;x,Y)

F(a, b; c; 2) () 1 g _ INCOINCS) 1
- T(@I(b)T(c — a)[(c — b) 2 J—z—m (@+9 F(«)F(/?')F(y ATz
x D(b + s)[(c — a — b — [ (=s)1 — 2)° ds, x f 0GB + 9r(—s)1 -
(3) ~l—ico

where |arg (1 — z)| < 27, and where the poles of < L f_k+im Fe4+s+ 00 + 1)
I'(@ + s)['(b + s) are on the left, and the poles of 27 Jok—iw Dy —a — OP(Q + 1)

T'(c—a—b—9s)I'(—s) are on the right of the
contour in the s plane. If a is replaced by « + ¢, b by XTIy —a—f—s5—0I(=)(—p) dt:l ds. (4)
B, ¢ by ¥, and z by x, Eq. (3) then gives an integral
representation which may replace the hypergeometric It remains to transform the inner integral on the

function inside the integral of formula (2). Suitable rhs of (4) into a form involving a power of 1 — y.
restrictions on the parameters make it possible to This calculation may be begun with an application of
interchange the order of integrations in the resulting Barnes’s lemma,'® according to which

RS f‘"‘““’ Pt s+l +ult -l —f —a—=s—w _Tet+s+ ol +1 )

270 Jm—ico Ty — BNy —a—5s) L' + 1)

provided that the poles of I'(x + s + w)['(8’ + u) are integral in (4). If the integral representation (5) is
on the left, and the poles of I'(t — w)I'(y’ — " — substituted for this ratio of gamma functions in (4),
® — s — u) are on the right of the u contour. Note and the order of performing the operations of inte-
that only one of the arguments of the gamma functions  gration along the u and along the ¢ contours in the
inside the integral in (5) involves ¢. The expression on resulting integral is reversed, one obtains for the
the rhs of (5) appears as a factor inside the inner inner integral in (4):

1 (T + s + Wl + Wy — f —a—s — u)

270 J—m—ico 'y — 'y —a—5s)
A (T D(cu+ Oy —B—a—s—OI(=1) .
% |:27ri J‘-k—ioo 'y —a—1) =9 dt:] du. (6)

If |y| > 1, the inner integral (including the factor 1/2wi) of (6) is equal to the sum of the residues of the
integrand at the poles of I'(—u + ), i.e., equals

F(y_ﬂ_a_s—u)r(—u)(—y)“F(V—ﬁ—fx-—s—u, —u;y—oc—u;l),
'y —a—u) y
which, by Euler’s transformation,'® becomes
—B—o— s — w(— — \¥
Py =f =« =3 = uwl( mkw%y wF@+&—MV—a—m 1)‘
Py —a—u) y 1—-y

The ratio (—y)*/y* is eT*"%, where the upper, or lower, sign in the exponent corresponds to Im (y) > 0, or to
Im (y) < 0, respectively. The above expression may again be given in terms of a Mellin-Barnes contour integral

Frnly—f—a—s—u 1 f_"Hw P(—u +lB + 5+ u — »)['(—v)
'+ s) 27 J-n—iw 'ty —a—v)

where |arg(y — 1) < 7 and where the contour divides the v plane so as to separate the poles of

(y — 1)’ dv, Q)

11 E, W. Barnes, Proc. London Math. Soc., Ser. 2, 6, 141 (1908).

12 E. T. Whittaker and G. N. Watson, A Course of Modern Analysis (Cambridge University Press, London, 1927), 4th ed., p. 290.
13 Reference 11, p. 155; Ref. 2, p. 50, Eq. (8).

14 This assertion is closely related to one proved in Ref. 12, Sec. 14.5.

15 Reference 2, p. 109, Eq. (6).
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I'(—u + v) from those of I'( + s + u — v)['(—v);
the proof of this assertion lies in assuming that
[y — 1] > 1 and then evaluating the integral as 2w
times the sum of the residues of the integrand at the

1 1

1 J'—n+ioo F(—-U)
L@y’ — 0@ —a — B + s) 27i J-n—iw I'(y —a — v)

G. E. HAHNE

poles of I'(—u + v). If (7) is now substituted for the
expression within brackets in (6), and the order of
integrations in the resulting double integral is reversed,
one obtains

y—1y

x [-i—f_m+iwl’(oc+s+u)F(ﬁ'+u)P(ﬂ+s—v+u)F(y—ﬂ—oc—s—u)

27 J-m—iw

The expression in brackets in (8) will be called M_ or
M, the subscript corresponding to the sign in the
exponent. M. is evaluated in terms of 3F, generalized
hypergeometric series of unit argument in Appendix
B.IG

x T/ — ' — o~ s — W — u)e™™™ du] do. (®)

If now the expression for M. obtained in Appendix
B [formulas (B9) and (B10)] is substituted into (8)
and the resulting integral replaces the inner integral
on the rhs of (4), the following integral representation
for an analytic continuation of Appell’s F, is obtained:

s e DODQemresnr® ) 1 fbrim ponsio s
F2(a! /3’ /3 ’ 7, 7 s Xy y) - F(a)F(ﬂ)F(ﬂ’)l:F(y _ ﬁ) (27”)2 _f—l—ioo i Ll(a’ /39 ﬂ ) 7, y ’ S, U)
T —f —at+f—ol(=0)(=s) .
X A (x — 1)°(y — 1)* dv ds
e:ﬁ:hr(ﬁ-—y) 1 —1+i00 P—-ntico

+ _—
F(y’ - ﬁ') (2711)2 —l—iw J—n-—io
T ==+ f — J(=9T(~v)

Ly(o, B, 8, v, ¥'s 5, )

I'y —a—5)

The upper or lower signs, respectively, in the exponents
in (9) correspond to Im (x) > 0 and Im (y) > 0, or,
respectively, to Im (x) < 0 and Im (y) < 0. Use has
been made of the fact that e*"3(1 — x)* = (x — 1)5,
where in either case |arg (x — 1)| < 7. An asymptotic
bound for large |s] and/or large |v| of the 3F,’s of unit
argument present implicitly in the integrands on the
rhs of (9) is derived in Appendix C. From this asymp-
totic approximation it may be inferred that both double
integrals in (9) converge absolutely, if x # 1, y 5 1,
and
farg (x — D| < =,
larg (y — | < =,
larg (x — 1) — arg (v — D[ < 3
hence, the previously assumed conditions on x and y
may be relaxed to the weaker restrictions (10); that is,
(9) immediately provides a further analytic continua-
tion of Fj,.
The final step in the derivation is to evaluate the
rhs of (9) in terms of infinite series in powers of
(x — 1)and (y — 1). To accomplish this, it is sufficient

(10)

16 Note that the s and v contours divide the increasing from the
decreasing sequences of poles of M, and M_.

(x — 1)y — 1)° dv ds]. )

to assume temporarily that [x — 1| < 4, [y — 1| < 4,
farg (x — 1)|] < =/2, and |arg (y — 1)| < #/2. Let C,
be the contour in the s plane consisting of the vertical
straight-line segment s = —/ 4 iy;, R>y, > —R,
and of the semicircle s = —/ + Re™, —7f2 < ¢, <
+/2, and let C, be a similar contour in the v plane
(one may restrict the parameter values so that these
vertical straight lines divide the increasing from the
decreasing sequences of poles of the integrand).
Choose R so that neither C; nor C, passes through any
of the singularities of the integrands of the rhs of (9).
Then as R — 4o (in a manner so that the distance
from the contours to the singularities is bounded
away from zero), one has

—I+io —n+ico
f dsf dv
—l—t —n—iw
R /2 )
= lim {§ ds 3€ dv +f (i dyl)f iR e dy,
R~ w Ch (o] ~R —7/2

/2 R
+| iRe? d%f (i dys)
-R

—7/2

/2 . x/2 X
- iR " dzplf iR e'®? d¢2}.
2

—u/2 —x/

(11
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It can be shown, with the aid of the results of Appendix C, that, if the rhs of (9) is written as the limit of four
integrals according to (11), then each of the latter three integrals tends to zero as R co; at the same
time, the first integral may be evaluated with the residue calculus. Applying this process to (9), one
obtains the desired series'?:
Fz(d, ﬁ, ﬁ’, v, yr; X, y) = F(?)F(V ),F(Y - 5 —7 ’+ ﬁ ?F(V - :8 —«+ 5) e:hir(a—i—ﬁ’—-y‘)

Py - AT — F + O — o)

T % &) mtn( Bl + 1=
xzz ’ ’(),+(ﬂ)( ’)’? -
moamom!nt(y —f + B la+1—9 +F — P
atl—y+B—F+my —ﬂ’—a+ﬁ-n,y'—ﬂ’;1]

x gF 1 —x)"1 - »°
e ety — (=0t =2
F(Y)P('}")F(“ v + ) eﬂ:ir(¢+ﬁ’—-7')(y . 1)1’~ﬂ‘—a+ﬂ

P@I@T(y — B

xi i ¢ =B +B+mBnl—y+B+y =8
m=0 n=0 minl(l+y —f —a+ P

+1"""?+ﬂ—ﬂ'+m,"n,7'—ﬁ’;1

x " Ja=oma—yr
Fol oy prprmi-yrpry—p LTI

PTG =8 =y + AU = — 2+ F) surtarpn

T@Erey' — By — p+ BTG — )
- (a)m+n(ﬂ’)n(a +1- y,)m

m=0 7i=0 Mm! n!(y - 5+ ﬁf)n(a +1—y-+ ﬁ - ﬁ')m

+1—y'+f—f+ny—f—at+f—my—pil

X gF [a 2 :} 1 — X)1 — \*

o y—B+B+ml—y +8+y—B ¢=9"=»

PN —y + 8 —8) u :
e:&:ur(a-f-ﬂ—y) x — 1)7—ﬁ—¢+ﬁ
@I — 6) (
% § i(? — B+ + M)l =y + 8 +y— B
a0 n=0 minl(l+y—8~a+8),
1- ’+16’—ﬁ+n3'"msy_6.1
xF[‘”‘ Y ’]1-—:;'“1- "
Ty b pami—y g ry—p T 1
‘The rhs of (12) consists of four terms, each containing a doubly infinite sum; the third and fourth terms
differ from the first and second, respectively, by simultaneous interchange of x and y, § and §', ¥ and »'. The
cases y — g - ;f’ + B’ = integer, ¥’ — B’ — « + § = integer, and y — § — a + f’ = integer have been
avoided in o}otammg (12); these special cases aside, the restrictions put on the parameters are no longer needed,
and the validity of (12) may be extended, by analytic continuation in the parameters, to almost all sets of

values of «, 8, §', ¥ and »’. With the aid of the results of Appendix C, it may be concluded that all four series
on the rhs of (12) will converge absolutely if |x — 1| 4 |y — 1] < 1. Thus, Eq. (12) is the essential result of this
paper.
It is p_ossible to write the second and the fourth term on the rhs of (12) in the form of Appell’s hyper-
geometric function Fy; this will now be done. Consider the hypergeometric function?®
APTR(BY BB+ L=y 1= By = p et 132 )
X ¥y
> BnB+1—7v) = 1-p50 -1 1— )\ , .
- _®. V)m ‘2F1[7»’ ﬂ B (y )/y]( )x.,y,,..y,' 13
mo(y) = +f—a+Dum!” 1y - +pf—at+l+mi\ x
17 The function F; and its analytic continuations will be singular only on the planes x =0, y =0, x =1, y =1, x =00, y =
:txi o+n éwe;—; rIi b(:g ]_l;ett;.l el ;e;;g 42-49). The choice of signs in the exponents of (12) corresponds to a choice of );aths fc);r the a:alytioc? cg;ltinszi

18 If this function is multiplied by (1 — »)*—#"—**+2_it will be a solution to the system of partial differential ti i
Compare P. O. M. Olsson, Arkiv Fysik 25, 473 (1964), especially p. 480. 4 P ential equations satisfied by Fs-

X
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If one applies Euler’s transformation to the hypergeometric function under the summation sign, the rhs of
(13) becomes
BnB+1—V)n 2F1|:7’ -8, 7/ +h—atml— y:lx—ﬂ—ma — ™
Ao — BBt Dum! "Ly - f—atlem
If [1 — x| + |1l —y| <1, one may write the above sum as a series in powers of (1 — x) and (1 — y) by

expressing the hypergeometric function as an infinite series in powers of (1 — y), expanding x—#-m =
[1 = (@ — x)I"#~™ as an infinite series in powers of (1 — x), interchanging the order of summation, and

collecting terms. The following series is then obtained:
@'+ B = DBy — B 3F2|: '/3 + p, ﬂ,+ 1 - '}ja —q;1 ](1 — x)"(1 — y)°.
poa=0 (Y —f +p—a+Dplq!” fF+1—y —qy+—u

(14)

At this point, the terminating series 3F, in the summa-
tion (14) is transformed into another terminating ,F,
series as follows!?:
2 ’ ’
-y -y + -
U=y +B+y =B — B + B+ D)
&' =B+ B — 0,
x F[“"‘l—7+ﬂ—ﬁ’+p,—q,y’—ﬂ’;l:|
3t2 , ’ ’ |
Y—F+B8+pl1-y+B+y—8
(15)
If the rhs of (15) is used in (14), it is clear that the
double sum obtained is identical with the second
double sum of the rhs of (12). With appropriate
changes, the fourth double sum in (12) may also be
written as an F,. The first and third terms of (12) are
both regular at the point x = y = 1; no hypergeo-
metric form seems to exist for them in general.
If one of the Eulerian transformations is first applied
to the F,, for example,2®
Fy(, B, ﬁ’9 VY%, =0—x)"
X Foo, p — B, By, v x[(x = 1), yi(1 — x)),
(16)
and the process leading to (12) is then applied to the
F, on the rhs of (16), an analytic continuation of F,

to a different region of x, y space results. In the
example, four double series in the variables

x  =lx
x—1 1—(1/x)’
y_ _Ux)+ Ay — djxy)
[1 - A/)11/y)
appear. These double series converge provided that
(1/x, 1/y) is in the region
1/x am + afy) = Axn|
1 —(1/x) /i — 1/x)}

1% L. 1. Slater, Generalized Hypergeometric Functions (Cambridge
University Press, London, 1966), p. 120; the formula given here is
that relating Fp(0; 4, 5) to Fn(5; 1, 2).

20 Reference 1, p. 25; Ref. 2, p. 240.

1 —

1 —

1—x

The region is shaped roughly like the interior of a
truncated cone for which the apex is (1/x, 1/y) = (0, 0),
and the “axis” is the surface (1/x) + (1/y) —
(Ifxy) = 0.2

A final remark: Since both types of confluent
hypergeometric function ®(b, ¢; x}) and W(b, c; x)
possess integral representations of the Mellin-Barnes
type,? it is clear that the functions

Fp(a, by, by, ¢, €y, X1, X3)
and
Fg(a, by, by, €1, €3, Xy, Xp)

defined by Olsson® both may be represented by
Mellin-Barnes double integrals. Manipulations of
these integrals similar to those carried out earlier in the
present work yield series expansions in powers of
(1 — x,) and (1 — x,) for the functions Fp or Fpg,
which results have already been obtained by Olsson2?
(who used other methods).

APPENDIX A

An asymptotic approximation to the hypergeo-
metric function F(a + A, b; ¢; 2z) for large A may be
found by a method outlined by Watson.2¢ The result is
as follows?5:

2F1|:a + 4, b; z:I

c
~ F(cF (i)b) (_Z)_W[l + O(ﬁ)]

as |A| — oo.

21 Compare A. Erdélyi, Acta Math. 83, 131 (1950).

22 Reference 2, p. 256, Eqs. (4) and (5).

23 P, O. M. Olsson: Ref. 6 and Arkiv Fysik 28, 113 (1965). Olsson
shows that these functions satisfy the same system of partial equa-
tions as is satisfied by F,.

24 G. N. Watson, Trans. Cambridge Phil. Soc. 22, 277 (1918), in
particular, see Sec. 17.

25 The asymptotic approximations for large |b| to F(a, b; c; 2),
given in Ref. 2, p. 77, formulas (13), (14), and (15), are incorrect, for
example, in the case that ¢ = ¢.
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The above formula holds if, but not only if,

larg (M < 7/2, larg (D) <7, Jarg(—2)] <,
and
jarg (1 — 2)| < =.
APPENDIX B
Consider the integrals /_ and I, where
100
I ==L | "T( + 900 + 90 + )
Tl J—ixo
x Tl —d — I'(1 — f — [(—s)e™ " ds;

(B1)
the contour is supposed to be indented, where
necessary, so that the set of poles of I'(a 4 5) x
T'(b + s)I'(c + ) lies on its left, and so that the poles
of T(1 —d — sHI'A — f— s)I'(—s) lie on its right.
Let K(a, b, ¢, d, f) be defined as follows:

K(a, b, c, d’f) = _1_ eiw(l—d)]’_ - i e—iw(l—d)1+;
2mi 2mi
(B2)
combining (B1) and (B2), one has
K(a’ b’ c, dsf)
1 (T + )L 4+ s)T(c + s)
27 J—iw I'(d + s)
x T — f — )(—s) ds. (B3)

The reflection formula for the gamma function?® was
used to obtain (B3).

Using (B2), one may solve for I_and 7, in terms of
K(a, b, c,d,f) and K(a, c, b, f, d), with the following
result (d — f 5 integer):

ﬂezF'iw(l—f)
I = K(a, b, ¢, d, f) ——
== K( f)smw(f—d)
e?iw(l——d)

+ K(a, ¢, b, f, d) m .

The integral (B3) for K(a, b, ¢, d, f) may be expressed
in terms of ,F, generalized hypergeometric series with
unit argument as follows?”:
K(a,b,c,d, f)

_Td —f+ald — f+ HI@T(B)I(c)

P —f+ a + HI'd)
% 3F2|: a,b,d —c;1

i1—f+a+b,d

While, in general, the series

F l:“l 5 Oy, g5 1]
3l

ﬁl ’ ﬂz
28 Reference 2, p. 3, formula (6).
27 Reference 19, p. 112.

(B4)

]. (BS)

—_ < (ul)n(aﬂ)n(a:‘i)n
’ZO (BDn(B)nn!

529

converges only for Re (8, + 8, — o — a3 — ag) > 0,
it may be shown that the complete analytic continua-
tion of

1

FBIT(BIT (B, + B2 — 0y — oy — atp)

X 3F2[°c13 Ag, X3, 1]
:31’ 52

is an entire analytic function of all five complex param-
eters o, oy, o4, f1, and fB,. In this sense, the ,F, has
a value for any set of values of the five parameters,
except only those sets corresponding to poles of

PBITBIL(By + B — oy — oz — ).

It will be convenient to apply one of the transforma-
tion formulas of Thomae®® to the ,F, on the rhs of
(BS):

3F2 %y, Ao “3; 1
I: ﬁl’ 52 ]
— F(lsz)F(ﬁl + By — oy — %y — aty)
T(By ~ a)l'(Br + B — 1 — 2p)
F, Ay, B — oy, f1 — %3 1]. B6
X [ﬂ1,/31+182“°‘1—“2 (B6)
Using (B5) and (B6), one obtains the following ex-
pression for K(a, b, ¢, d, f):
K(a, b, C, dsf)
_Tla+1-00kb+1— Nl + 1 = Hl@I(b)
FA—f+a+ A —f+d
d—c,l——f+b,1—f+a;1] (B7)
1—f+a+b31—f+d '

The integrals whose evaluation in terms of ,F,’s of
unit argument is the goal of this appendix are M_ and
M, , where?®

X 3F2[

. 1 —pt+ico
M;=e+””’~—.f Na+s+v4+w
27i J-p—io

XT@B+s+wl'@ +v+w

X'y —f—a—s—v—w)

XTIy —f —a—s—v—w)

X T(—w)eT™™ dw. (B8)
Takinga=oa+s+v,b=0+s,c=8 +v,d=

at+l—y+B+s+v, f=m=a+1—9y +8 +
s + v, and using (B4) and (B7) to evaluate (B8), one

28 J. Thomae, J. Reine Angew. Math. 87, 26 (1879); F. J. W.
Whipple, Proc. London Math. Soc., Ser. 2, 23, 104 (1925); see also
Ref. 19, p. 116; in Whipple’s notation, (B6) is stated as follows:
Fp(0; 4,5) = Fp(0; 3, 4).

29 Note that the rhs of (B8) differs from the corresponding expres-
sion in (8) in the text by a change of the variable of integration from
u to w, where u == v + w.
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obtains
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Mz = e[V —a — 0 — f' —a+ B — 0@ = B)Ly(o, B, B, 7, ¥'; 5, v)
+ eIy —~a — )y — f—a + B — Y0 — HLo(x, B, B> 7,55, 1)), (BY)

where

Py — B~y + )N (e + s + ))I(B + s)

Ly(a, B, B, Ys yl; 5,0) =

PG/~ 8+ B8 +59)

XSF2[<1+1—7+ﬂ—ﬂ’+s,7’—ﬁ’—a+ﬂ—v,7’—ﬂ’;1]
Y —B+B+s1—y+p+y~§ ’

LZ(“s.ﬂ9 /3,9 ‘}’, y’s S, U) = Ll(aa ﬂ,’ ﬂ& 7", }’, Ua S).

Note that neither L,(«, 8, §', ¥, ¥'; 5. v) nor Ly(«,p,
B', v, ¥'; s, v) has an increasing sequence of poles in
either the 5 plane of the » plane.

To obtain (B4), it was assumed that d — f#
integer. This implies that 8 — y — B’ 4 »’ # integer
in (B9). An expression for M. when f —y — ' —
y’ = integer may be obtained as a limit of (B9), or
by other means; neither these nor other special values
of the parameters will be considered in this paper.

APPENDIX C

In order to obtain (12) from (9) in the text and in
order to ascertain the region of convergence of the
double series in (12), it is useful to establish that, for
appropriate ranges of values of ¢ and =, one has the
inequality

a—a,b+¢,c;1j”
d +T’f
< K@ + 1ehP@ +17D9; (CD

75

here a, b, ¢, d, and f are given parameters, while K,
P, and Q are positive numbers whose values may de-
pend on a, b, ¢, d, and f, but are independent of ¢ and
7. The values of the parameters and the ranges of
values of ¢ and = which must be considered fall into
twocases: (1) Re(d+f—a—b—¢c)>0,Re(d) >
0, Re (d — b) > 0, while o and = range over all values
such that Re (¢) > 0, Re (v) > 0; (2)a, b, ¢, d, f take
essentially arbitrary given values (except that neither
dnord + f — a — b — c should be zero or a negative
integer) while both o and 7 range over all nonnegative
integer values.

It can be shown, with the aid of the contiguous
function relations for the hypergeometric series 3F, of
unit argument,®® that the demonstration of the
inequality (C1) for both of the above cases reduces to

30 E. D. Rainville, Bull. Am. Math. Soc. 51, 714 (1945).

(B10)

proving that (C1) holds under the circumstances that

Re(d+f—a~b—¢)>0, Re(d) >0,
Re(d—5)>0, Re(d) >0,
Re(f—¢c)>0, Re(c) >0,

while ¢ and r take on all values for which Re (¢) > 0,
Re (v) > 0. With these restrictions the oF, of unit
argument is given by a convenient integral representa-
tion:
1 [a—a,b+*r,c;1

= sFs :|
(N d+rf

— I'd + 1)

I(d — b)I'(b + 7)I'(f — I'(c)

1M
0J0
X oL — oYL — )+ du dv. (C2)

To see that the rhs of (C2) equals the lhs, one may
expand (1 — uv)~** in powers of uv and integrate the
resulting series term by term.3

The proof of (C1) by means of (C2) depends on a
preliminary result concerning |I'(d + 7)/T'(b + 7)|.
Let r be the least positive integer such that

Re(b—d+r)>0;

then one has®!
F(d + 7) (b + 7) 1 d+r—1 b.

— r T 1 _ —d+r-1 d .
Thtn Thodinh® ¢4 “
Taking absolute values of both sides of this equation
one obtains
I'd+7
' +7)

(b + 7,
P — d + 1)

1
xf yRe (d)—1(1 _ u)Re (b—d)+r—1 du
¢

<

< K[ +7l),
31 Reference 2, p. 9, Eqgs. (1) and (5).

(C3)
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where K, is positive and can be chosen so as not to vary with =, but so that (C3) holds for all = such that

Re (1) > 0.

With this result the proof of (Cl) is immediate, for if one takes the absolute value of both sides of (C2)

one obtains

I'id + 7)

1 a—or,b+'r,c;1]| ‘ 1
—— ,F <
NN [ d+rf

I'd — BI'(f — ol'(e)

I'th + 1)

11
xf f uRe(b)—l(l - u)Re(d—b)—l pRe (c)—l(l — U)Re (f—c)—l(l _ uv)—Re(a) du < Kz(l + |1_|)r’ (CA)
0 JO

where K is positive and is fixed at so large a value that (C4) holds for all = such that Re () > 0.
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The properties of SU3 finite transformations are investigated. These transformations on the defining
three-dimensional complex space are parameterized in a form employing three factors, two of which are
the Euler parameterization of an SU2 subgroup. The irreducible representations of the factored para-
meterization are found explicitly. The volume element is calculated and the orthogonality relation is
verified. Spherical harmonic basis states are derived as a specialization of the transformation matrix.
Another result is a definition of triality and a simple proof that it is additive modulus three.

I. INTRODUCTION

For some time now, the group SU3 has been
thought to carry the symmetry of the elementary
particles. Considerable work has been done concerning
the infinitesimal generators of the group. As an
alternative mathematical technique, we wish to
investigate the global properties.

A parameterization of all unitary groups was given
by Murnaghan.! We derive the parameterization used
by Nelson? and set the minimum ranges. This is of
special interest as it employs two factors which are
SU2 transformations in the Euler form.

Chacon and Moshinsky?® derive the IR’s in Murn-
aghan’s parameterization by extensive use of Weyl
reflections. Nelson,? using his parameterization,
restricted the representation matrices to a particular
right-hand state and so derived a single column of the
matrix which acts as a set of spherical harmonic basis
states. Both Nelson and previously Beg and Ruegg?
employ differential operators to represent the in-
finitesimal generators in their derivations. We derive

! Francis D. Murnaghan, The Unitary and Rotation Group
(Spartan Books, Washington, D.C., 1962).

4 T. J. Nelson, J. Math. Phys. 8, 857 (1967).

3 E. Chacon and M. Moshinsky, Phys. Letters 23, 567 (1966).

4 M. Beg and H. Ruegg, J. Math. Phys. 6, 677 (1965).

the complete matrix for each IR; the SU2 factors are
known and the third factor is evaluated by employing
tensor basis states. By applying a finite transformation
to these tensors the spherical harmonic basis states
are derived.

Weyl® and Murnaghan' discuss the dependence of
the volume element on the class parameters for inte-
gration concerning the characters of the group. We
evaluate the complete dependence of the volume
element on all parameters for Nelson’s parameteriza-
tion.

Symmetries of the transformations were investi-
gated, and one result is a natural definition of triality.
Baird and Biedenharn,® and Hagan and Macfarlane’
prove triality is additive modulus three. We provide a
proof that follows very simply from our definition.

In this paper we are guided by the strong analogy
that exists between our parameterization and that for
SU2. We follow closely the same procedures used in
SU2 to derive the corresponding results for SU3.

® Herman Weyl, Classical Groups (Princeton University Press,
Princeton, New Jersey, 1946).

8 G. C. Baird and L. C. Biedenharn, Proceedings of the Coral
Gables Conference on Symmetry Principles at High Energy, B.
Kursunoglu, Ed. (W. H. Freeman and Co., San Francisco, 1964).

? C. R. Hagan and A. J. Macfarlane, J. Math. Phys. 5, 1335
(1964).
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We use the following set of infinitesimal generators:

010 0 —i 0
L=t 0o}, =i o o},

00 0 0 0 0

1 00 001
1,,=<0—10,14=000,

0 00 100

0 0 —i 0 0 0 ()
15=(000,16_001,

i 0 0 010

00 0 1V/3 0 0
I7—<00—1,18= o 1IN3 o |,

0 i 0 0 0 —243

Tr (I, I)=26,;.

The basis states are chosen such that I; and I; are
diagonal in all representations, and thus serve to
partially label the states

1

v= e W(A’;) - Y\If(;;)
M = 3l,, M\F(A’;) - M\If(;;) )

The eigenvalues (Y, M) of the states within an IR are
displayed in two-dimensional weight diagrams.

The addition of I*= }(I2 4+ I3 4 I?) forms a
complete set of commuting operators which serve to
label the states

=y (E ) — I+ D¥ (g ) 3)

II. PARAMETERIZATION OF GROUP
TRANSFORMATIONS

We now derive the following parameterization:

U(a) = TszTé,

where
T, = e~ilo/2—i#1a/%—vIs/2 | T with primed variables,
4

Transformations in SU3 map Z — Z’, where Z and
Z' are vectors in three-dimensional complex space
such that the norm of Z’ equals the norm of Z. We
set Z1Z =2"72"= 1.

Beg and Ruegg? show that Z and Z’ can be para-
meterized as follows:

T, = e——ipIg/'\/ae—ivh.

OS(D,SZW,
0< 6L 72,
0<D L 7/2.

&®1cos 6

Z={e"sinfcos? |, &)

¢'®3 sin 0 sin O

DOUGLAS FRANCIS HOLLAND

By expansion of the exponentials, one can show that a
solution for (', §’, ') exists such that

0
e cos " |,
&‘® sin ®”

T)Z = 0< 0" < nf2.  (6)

The minimum ranges required are
0<a,y <4n, 0K<P < m

Therefore, if

elie = ¢i% 0<p<3m, (7a)
r=m2 -0, 0<v <K n/2, (7b)
then
0
T,TiZ = [0]. (8)
1

T, is the most general special unitary matrix with (1)
in the (3, 3) position. Let U be a general matrix of
SU3. From Eq. (8), and since the matrices are
unitary, we have

/7 ’
Uy U O

TLTU™ = |uy ug, Of =T3h (9a)
0O 0 1
Therefore,
U = TszTé. (gb)
We note that
e—ir13/217e1'v13/2 — Ie (10)

and another redefinition of y and &’ to absorb e#*Zs/2
would allow the replacement of I, by I;. Also, an
interchange of the role of the first and second com-
ponents of Z, would allow the replacement of J; or I,
by I, or I;. We choose I, to be consistent with Nelson’s?
work.

1. EXPLICIT DETERMINATION OF THE
TRANSFORMATION MATRICES

We now seek to generalize our result for the de-
fining three-dimensional representation to all IR’s.
In what follows, we use the integers (A, ) to denote
an IR (see Ref. 8), and (I, Y, M) to denote a state
within the IR. The symbols (4, u) are suppressed
unless needed.

From the commutation rules, it follows that an
SU2 subalgebra exists, composed of I, I, and I;.
Hence the basis states are chosen such that

P=pR4+I4+12, (11a)

8 G. C. Baird and L. C. Biedenharn, J. Math. Phys. 4, 1449 (1963).
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Y™ T2 m"
O = o e o L Lo ——--7 .
/,
/
. . . . /.’ .
T3
Y L] L ] . / . .
4
V4
. . d Y‘Iﬁm"“ I ;.'M.
M

Fi1G. 1. Weight diagram for derivation of the representations of
SU3.

I, and I, are diagonal, and

/1Y ry’\
M/

= waM (2, B, V)oyvOrr,

/1Y ry’\
\m | ¢ M’
Now consider a weight diagram (Fig. 1) which
displays the basis states according to the (Y, M)
values and consider
ry'’\

/1Y

\M M/
T, and T, connect states in the same horizontal line,
while T; connects states on the diagonal shown. This
gives a relation between M” and M”:

—1113/2 —'iﬂIg/Z —iyIg/2

(11b)

g—ieTs/ V3 = e Y8500 0. (11C)

T,T,T,

M =M"4+3Y -Y) 12)
Summarizing the above,
Y ry’
L
= ZewYD ”(a’ ﬂ’ 7)
Y ry’ . ,
<Mn ‘ vl Mw> fuli(m’, ﬂ" y )' (13)

/1Y,

\M, |°

1715/2

M/ i
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One notices that the undetermined matrix

/1Y ry’\
\MII MIII/

plays a role analogous to d? .(8) of SU2.In SU2, the
di,.(B) matrix is determined by applying e~#7: to a
suitable polynomial basis state representation. A
search for basis states in SU3 led to a paper by
Mukunda and Pandit.® Their basis states ¥ are
given in terms of tensors T,...."* which transform

under the three-dimensional deﬁmng representation
and its complex conjugate.

For low-dimensional representations or the impor-
tant special case where I’ = M’ = 0, the transforma-
tion of interest e=**/1 can be applied directly to these
tensors. The results for the eight-dimensional repre-
sentation are displayed in Table 1.

A general result for all IR’s would be very difficult
with this method. An easier way presents itself by
noting that

—ivly

eirlIa/2I4e—1'1rIe/2 = 12

Therefore we have only to determine matrices of the

type
/LY, grlsl2 IT\
M, M/
as
ry’\

/ Iy ‘ —ivly
\MI/

M/II /

/1Y ! Y\
— T 6
2\ M,/ T
1Y, 'y
XdlllgﬂMa(zv)aYﬂY <M urIe/Z M,,,>' (14)

Using the relations connecting the states V17 and
tensors, we finally obtain

1Y
\ 2 ()1—11 —m1( )u—fn +mgC( -min . mmI mlsz) .

X CGA — ji*™ + my), 3w — j5™ — my), L; 3G™ 4 my — 2), 3(=32™ + mg + p), M)

X No[3(A — ji'™ + my), $(u — j3™°
where

- mz)a Ia]N3(Iu a)—1N3(IY),

(15)

NoGjajaD) = [

QI+ DA —ji+jo— D! — ja + jo — D! ]*
(jl + ja — I)! (j1 +j+ I+ 1)!(}* - 2j1)!(/‘ - 2j2)!

Ny(IY) = [

QI+ DU+ p + 1)! 3
BA+20)+ I +3Y + 111 [3QA+p) + 1 — 37 + 1]!>

=+ Y + 33 —w, FT=3 -}y — 30— p.

? N. Mukunda and L. K. Pandit, J. Math. Phys. 6, 746 (1965).
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e—dvu l

T 1 1Y
ABLEL (

DOUGLAS FRANCIS HOLLAND

II 4
> matrix for SU3.

b 1 3 1 1 0 1 0 1 0 0 0 i -1 -1
3 - 1 0 -1 0 3 -3
P 1 cos? —(i\/f) sin » —i(\/—%) sin ¥ —sin? »
P X cos v X cos ¥
3 1 cos ¥ —sin ¥
-1
1 0 cos » —isiny
1
1 0 —@Vv2sin #(1 + cos? ) —(#V3)sint v —(i/V2)sin»
X cos v X Cos ¥
1 0 —isiny cos ¥
-1
0 0 —i(\/gz) sin v _@\/5) sin? v —3}sin?» + cos®v —-i(\/g) sin »
X COos v X Cos v
3 -1 —isiny cos ¥
H _ -
3 -1 —sin? » (=ifV'2)sin» —i(VYsiny cost v
—3 X cos ¥ X cos vy
IV. SPHERICAL HARMONIC BASIS STATES results agree to within a phase factor:
For the group SU2, the spherical harmonic basis Aom
states were obtained by specializing to the right-hand u—n Y —>u
state m' = 0 in D?_.(«, B, ). In this way the de- p—pB
pendence on y was eliminated. Comparing this to B—
SU3 we define y—>y
% — K3

1Y
¥ = T,TT; I =0
<M, 282| )

_ <IY

M

The choice of I = 0 for the right-hand state eliminates
three variables.

We now derive the explicit form of this matrix.
From a weight diagram we see that
°Y°>. a7

T,T; I = 0) for SU3. (16)

—sz I

/1Y
\m | 0
We can evaluate the last factor by applying this

transformation e—%"I« to the tensor basis states.
The basis states are

—(= i1 + D
3+ D + 1

Fat+u+1)
X A}u_rssv+61+3), b u—irav—sI—n(2)e

IF{'I{ = eipYDfllM’(‘x’ ﬂa '}’)

IFS‘{ = CSC ’VD{W,}Y_F}()__”)(“’ ﬂ’ )’)

1pY

18

Nelson? derived these functions by constructing
differential operators representing the infinitesimal
generators. With the following substitutions these

V. VOLUME ELEMENT

Murnaghan® derives the following relation for the
volume element:

2 0
U PACHIANOE
O,

The determinant is unaffected by a unitary similarity
transformation. Therefore we may as well evaluate

U(a) = IC2L. (19)

7"3T2[U—1 9 ]T"IT -1
0o,
=T 1—T,, for o, 8, v, (20)
Ou;

[3
Oo,

With a little manipulation, Eq. (20) decomposes the
8 x 8 determinant into a 3 X 3 (equal to the SU2
volume element sinf8) and a 5 X 5 determinant
independent of «, f, y. By the same argument, the
contribution from the other SU2 factor is sin f'.
The dependence on the other factor is easily found by
evaluation of the 5 X 5 determinant with « = y =

@ =y =0,p=F =nf2

T;,,Tz] T T35, for other variables. (21)
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The volume element is arbitrary in regard to the
coefficient. This constant is usually chosen such that
J g p(a) d(a) = 1. We also wish the volume element
corresponding to the SU2 parts of the parameteriza-
tion to have the correct coefficient for SU2. We there-
fore have

p(a) d(a) = sin fsin B’ sin (2¥) sin® ¥
dp dudBdy ;.. de’ dB dy
3ndn 2 4n 4w 2 4m

VI. ORTHOGONALITY RELATIONS
The orthogonality relations are derived by using
a procedure similar to the one outlined in Gottfried'?
for SU2. A problem in phases arises in connection
with the D* appearing in the orthogonality relation.
We leave it to the reader to add the appropriate phase
factors where needed (see Ref. 11, pp. 46-47).
Using the Clebsch-Gordan (CG) coefficients to
reduce the direct product, we have

Dcll vl(a) Dvg V’(a)

—_ Z (.""1' B2 .u'v) (Mf e ”7) DY (o),
gy \=vy ¥y ¥/ \—v ¥y ¥ i

-" = (119 —'Yl’ _Ml) (23)

(22)

We now show that
fRDe,v(a)p(u) d(@) = 8,18,00,0,

where u = 1 for the one-dimensional representation.
From Eqs. (13) and (18), and using the result from
SU2:

beﬁhM.w, B,7) dR(%, B, %) = Sredradan. (24)
We have also

f D& (a)p(ar) d(@)
R

'/2/0 0‘ —ivlg

o \ 0

0 0>
0
(25)

10 Kurt Gottfried, Quantum Mechanics, Vol. I (W. A. Benjamin,
Inc., New York, 1966).

11 P, Carruthers, Introduction to Unitary Symmetry, Interscience
Tracts on Physics and Astronomy No. 27 (Interscience Publishers,
Inc., New York, 1966).

= 6;.1,161706106111061'

X sin (2v) sin®» d(2v)
= 6”16v106vo .
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We use this result in integrating Eq. 23 as follows:

f DA, () D23, (a)p(e) d(a)

=(#i" Ha 1)(/4{" Ha 1). (26)
—v; vy O/ \—»; v O

Using results derived by de Swart!? for the SU3
CG coefficients, we have the desired result:

5“"“5""6“,‘,,:

f D, (o) D2, (@)p(a) d(e) = @n

1

VII. TRIALITY
We see from Eq. (13) that

Dy (p+ ma + 27, a)
= exp [—in(Y + 2M)] D}, (p, @, ). (28)

Exp [—im(¥ + 2M)] is a scalar matrix (it commutes
with all matrices in the defining representation) and
therefore exp [—in(¥ + 2M)] = exp (27it/3)I, where
t is an integer from the set {0, 1, 2}.

This provides a convenient way to define f, the
triality of a representation. It reduces to the standard
definition, since, when I =0, M =0, then Y, =
#(u — 1) and therefore t = A — yu mod 3. The repre-
sentations can be classified according to the value of
t. In the decomposition of direct products we find that

Db = S (.ul Ha u) Do, Do (ul Ha #)
woveva\vy vy v) U TNy gy

implies that
exp (i§mt) = exp (i§nt,) exp (i§nty). (29)

Therefore, for the triality we find ¢ = ¢, + 1, mod 3.
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The Korteweg—de Vries equation and the Burgers equation are derived for a wide class of nonlinear
Galilean-invariant systems under the weak-nonlinearity and long-wavelength approximations. The former
equation is shown to be a limiting form for nonlinear dispersive systems while the latter is a limiting form

for nonlinear dissipative systems.

For a wide class of nonlinear Galilean-invariant
systems, if the nonlinearity is weak and if one makes
the long-wavelength approximation, the governing
equations can be reduced to either the Korteweg—
de Vries equation

nr + nng + 6”&55 = 0 (1)
or the Burgers equation
n, + nng -— 'Vngg = O, (2)

depending on whether the system is dispersion or
dissipation dominated. Here we propose to derive
these equations for a class of nonlinear systems
characterized by the state variables (n, #,f) which
are governed by

n, + (), = 0, 3)

(nu); + (m? + P), =0, 4
P=P(f,n,u,fi,m, 0, fis, 5,4, 7)s  (5)
F(fin,u, fiong, vy, [, Mygrthyg, == 7) =0, (6)

where the subscripts  and j denote differentiation with
respect to the space and time variables x and .
Equation (3) is the familiar law of conservation of
particles if we interpret # and u as the number density
and particle velocity, respectively. Equation (4) is
then the law of momentum conservation with (5)
defining the generalized stress force P as a function of
the state variables (n, u, f) and their derivatives. The
state variable f here serves as a parametric function in
(5) and (6), which defines P as a functional of #, ¥, and
all their derivatives. It is known that (1) and (2)
describe small (nonlinear) perturbations from a

* Papers I and II were published in J. Math. Phys. 9, 1202, 1204
(1968).

t Present address: Division of Applied Mathematics, Brown
University, Providence, Rhode Island.

1 Present address: Department of Applied Mathematics, Univer-
sity of Texas, Austin, Texas.

uniform equilibrium state. We assume that both P
and F can be expanded as Taylor series around such
a uniform state.

To give some idea of possible forms for P and F we
list several examples of physical interest:

(1) Gas dynamics. Here f stands for the thermo-
dynamic pressure. For P and F we have

P=m"[p—pu@u/dx)l, F=p—An"=0, (7)

where u = viscosity coefficient, y = ratio of specific
heats, and A4 is a constant of proportionality.

(2) Waves in shallow water.! The number density n
in our equation now stands for 4, the elevation of the
water surface above the bottom of a channel. In this
case the state is defined by only two functions 4, u.
Thus (6) is not needed and we have

P = %ghz - %ha(uxt + ung, — ui)- (8)

(3) Hydromagnetic waves in cold plasma.? Here f
stands for the magnetic field B(x, ¢) and we have

P=1B* F=B—n— (B,n),=0. )

(4) Ion-acoustic waves in cold plasma.® Here f stands
for the electrostatic potential w(x, ¢) and we have

P=e¢"—}y2, F=En—e"+ y,,=0. (10

At equilibrium, all the derivatives in P and F drop
out and we leave out the dependence of P and Fon u
to preserve Galilean invariance of the system, i.e.,

P=P(f,n) and F(f,n)=0. an
Equation (4) can then be written as follows
u, + uu, + (@®[m)n, = 0, (12)

1 See the appendix for a derivation of the correction to the usual
shallow-water equations.

2 C. S. Gardner and G. K. Morikawa, Courant Institute of
Mathematical Sciences, New York University Report NYU-9082,
1960 (unpublished).

3 H. Washimi and T. Taniuti, Phys. Rev. Letters 17, 996 (1966).

536



KORTEWEG-DE VRIES EQUATION AND GENERALIZATIONS. III

where a? = [P, — (F,/F,)P,] with the subscripts
denoting partial differentiations. If a® > 0, then (3)
and (12) define a hyperbolic system of equations with
the two characteristic directions given by

dx[dt = u % a. (13)

Therefore, a as defined above is the speed of wave
propagation. Furthermore, in the limit of infinitesimal
perturbations around a uniform state, one obtains
the wave equation with a constant speed of propaga-
tion:

(14)
were a, is the wave speed of the uniform state.
Any solution of Eq. (14) consists of two form-pre-
serving waves: one is right-going and the other left-
going.

We view the Korteweg-de Vries and Burger equa-
tions as designed to describe the slow change of one
of these two waves due to both nonlinear and dis-
persive (or dissipative) effects characterized by the
dependence of P and F on the derivatives. We therefore
change (3)-(6) to a frame of reference which moves
with one of these waves, say to the right at speed
a, (a similar result can be obtained for the left-going
wave). To account for the slow variation of the wave-
form, we introduce, after Gardner and Morikawa,?
a scale transformation of the independent variables;
ie.,

2
Uy — Qollpy = 0’

&= €a(x - aot),

(13)
(16)

where € denotes the amplitude of the initial disturb-
ance and is assumed to be small compared with unity.
The exponent « > 0 is a number to be determined
such that the time variation of a state variable (in the
waveframe) is balanced by both nonlinear and dis-
persive (or dissipative) effects, Using Eqs. (15) and
(16), in (3) and (4), we obtain

= €a+1t’

en. 4+ (u — agng + nu, = 0,
eu, + (4 — apuy + n1P, = 0.

17
(18)

We now assume that the state variables n, f, and u
can be represented asymptotically as series in powers
of € about an equilibrium state A = (n,f,u) =
(”o sﬁ) ’ 0)’ i-e~9

n=ny+ en® 4+ &n® 4 ... 19
f=f;,+€f(1)+€2f'(2)+..., (20)
u=20 + €u(l) + E2u(2) + .- (21)

These expansions and the transformations (15) and
(16) are then substituted into the Taylor series of P
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and F around the equilibrium state A,. In the first
order of approximation, all the derivatives of the
state variables with respect to x and ¢ are dropped
because of (15) and (16), and we have

P=P0+Pfo(f—ﬁ))+Pno(n_no)

+ P,o(u — up) + O(e?), (22)
F=F,+ Ffo(f'—ﬁl) + Foo(n — ny)
+ Fo(u — uy) + O(e®). (23)

To preserve the Galilean invariance of the system,
the u dependence of P and F must be in the form

H, + uH,, (24)

where H is a function of the state variables and their
derivatives. The dependence of H on u must be again
of that form. Thus in (22) and (23), P,, and F,,
which are evaluated at the equilibrium, vanish identi-
cally. From (22) and (23) we obtain

aP(l) F an(l) an(l)
=( no——ﬂlPro)_‘Eag_ (25)
0¢ Fo 13 0é
The leading approximation to (17) and (18), then, is
aonél) = nou(gl),
aguf" = (agngn{".

Integrating these and noting the boundary condition
for n'¥ and 4™ at £ — + o we have

an' = nguv.

(26)

This permits reducing the leading-order problem to
one variable, say n). Our objective now is to derive
an evolution equation for n¥. Corrections to (22)
and (23) can now be obtained from (5) and (6) with
the help of (26). Within the order of our approxima-
tion, we obtain

P(EZ) ~ agn?) + An(l)nél) + ea—ang) + EZa—lcné};’
(27

where A4, B, and C (like g,) are constants depending
on the partial derivatives of P and F evaluated at the
equilibrium. Here we have kept the term e*-1yi)
although it is small in comparison with eyl
(o« > 0) for cases where B = 0. For the examples we
listed above, the constants a3, 4, B, and C are given in
the following table:

al A B (o
Gas dynamics yKTim 0 —va, 0
Water waves gho 0 0 3gh,
Hydromagnetic B, 1 0 1
Ion-acoustic 1 0 0 1
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In the next order approximation of (17) and (18), we
have

a
n +2=2pWp{ — gn® 4+ nu® =0, (28)

ng
a A 1B 1 C
—gnil) + _n(l)nél) + & 1—né§) 4 21 n;‘;;
Ry L Ry Ry
2
a
— agu® +=2nP® =0. (29)

Ry

We now eliminate #{* and u{* between (28) and (29)
and obtain the evolution equation for nV, i.e.,

n(l) + (i

a . B
4 _o) nn® 4 &1 B
2a, n,

2a,

+e=1 Sl =0. (30
2a,

If B 5 0 (for a dissipative system B < 0), we set
o = 1 and neglect the last term in (30). The resulting
equation is the Burgers equation (2) (except for some
constant coefficients which can be scaled out). On the
other hand if B = 0, i.e., if the system is nondissipa-
tive, we set o = } and obtain the Korteweg—de Vries
equation (1). Evolution equations for higher-order

quantities can be obtained in a similar fashion.
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APPENDIX: DERIVATION OF THE CORRECTION
EQUATION TO THE SHALLOW-WATER
THEORY

We start with the two-dimensional incompressible
inviscid hydrodynamic equations

ou ou ou
L L L Al
Py +u . +v Pz> (A1)
ov ov ov
LR LR L. : A2
at +u P + ay Dy g ( )
ou  Ov
— 4+ —=0, A3
dx dy (43)

where we have taken the fluid density to be 1. The ver-
tical component of velocity v on the bottom of the
channel (for brevity, we assume a horizontal bottom)
and the pressure on the free surface are both assumed

C. H. SU AND C. S. GARDNER

to be zero. We also need the kinematic free-surface
condition
oh oh
v, =+ u,—
Pt fox’
where A(x, t) is the height of the water surface above
the bottom and the subscript s denotes quantities
evaluated at the free surface.
We want to find a set of equations which governs the
evolution of h(x,?) and the average horizontal
velocity @ defined by

(Ad)

n{x,t)

u(x, y,0)dy,  (A5)

a(x, 1) = 1

h(x, t) Jo
where y = 0 is taken to be the bottom of the channel.
Integrating (A3) with respect to y, one obtains

¢’
o= —[ %y (A6)
0 Ox
Combining (A6) and (A4), we have
oh 0
—+ —(hi) = 0. A7
T ax( i) (A7)

This gives the evolution of A(x, t), provided we know
the evolution of k. We integrate (Al) from y = 0 to
y = h(x, t) and obtain

9 hiny + 2 thea + )1 =
% (h@t) + P [A(u® + p)] = 0, (A8)
where

—_— h h
hu? =f utdy, hp =f p dy. (A9)
0 0

The average pressure in (A9) is obtained by integrating
(A2), ie.,

v dv
px,y, ) = — | dy (g +—) + pdx, 1)
3 dt

” dv
=1|a av)
fy y(g+dt)

since p (x, t) = 0, where

i TR v
Then,
/) 2 h
w = [ ptx v ay =84 [layy 2. aro)
0 2 ) dt
Equation (A8) can now be written as
0, _ ar, . gh®
< (ha) + < na? + E-
at( ")+ax[ it 2]
R —_
+ —a—U dy y % 4 nd az)] =0. (A1)
dxJo dt
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Neglecting the last term in (All), the remaining
equation and (A7) consist of the familiar shallow-
water equations. We now want to include the effect
of the last term in (All) under the long-wavelength
approximation. Using (A6) and the condition of
irrotationality

u _ 0v

% T ox’
it is readily shown that the leading approximations to
the last term in (Al1) is

h 3
f iy _E G b, — @), AR

0 dt 3
and
— us
ut — @t = — i,, (A13)
45

where the subscripts represent the derivative of the
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average velocity. The correction as given by (A13) is
of higher order compared to (A12). Using (Al2) we
obtain the P given by Eq. (8) and

. .
_h =
PGS

2 3
[ha2 + g—zh— - % (i + i,y — zz:)] =0.

X

(A14)

It is of interest to point out that the improved
equations derived above contain the stationary waves
in the form of the well-known solitary waves and
cnoidal waves. By dropping the time derivatives in
(A7) and (Al4), one can readily integrate these
equations to give the solitary wave solution

h(x) =1+ (j2 — 1) sech? {}(1 — j?)x},

where we have set g =1, and j = ki is the flux
per unit width of the channel with @ normalized by the
wave speed (gho)i.
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separation,

1. INTRODUCTION

In order to estimate the dispersion forces between
two atoms, arising from their mutual polarization, it
has long been customary to treat the electrostatic
interaction between them as a perturbation and to
identify the resultant displacement of their energy
levels, computed with the aid of either Schrodinger
perturbation theory or the variational method, as the
potential of the interatomic force.!

With regard to the classical aspect of this problem,
it has been found advantageous to express the po-
tential energy V of the electrostatic interaction as a
sum of inverse powers of the internuclear distance
R, whose terms one can easily recognize as furnishing

* Work of this author was supported by the National Aeronautics

and Space Administration under Grant NsG-518.
1 F. London, Z. Physik 63, 245 (1930).

the interaction of the various electric multipole
moments of the one atom with those of the other.
If the atoms are electrically neutral, the interactions
involving monopoles vanish and, thus, the dipole-
dipole potential energy, proportional to R~3, becomes
the leading term of this series. Margenau®? gave the
first few terms of the series in Cartesian coordinates,
while Heller* provided the higher multiple terms up to
the sixteenth. The complete expansion of ¥ was
furnished independently by Carlson and Rushbrooke,?
using spherical coordinates, and by Rose,® in irre-
ducible tensor form. Both expansions presuppose

2 H. Margenau, Phys. Rev. 38, 747 (1931).

3 H. Margenau, Rev. Mod. Phys. 11, 1 (1939).

4 R. Heller, J. Chem. Phys. 9, 156 (1941).

®B. C. Carlson and G. S. Rushbrooke, Proc. Cambridge Phil.

Soc. 46, 626 (1950).
8 M. E. Rose, J. Math. & Phys. 37, 215 (1958).
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the interaction of the various electric multipole
moments of the one atom with those of the other.
If the atoms are electrically neutral, the interactions
involving monopoles vanish and, thus, the dipole-
dipole potential energy, proportional to R~3, becomes
the leading term of this series. Margenau®? gave the
first few terms of the series in Cartesian coordinates,
while Heller* provided the higher multiple terms up to
the sixteenth. The complete expansion of ¥ was
furnished independently by Carlson and Rushbrooke,?
using spherical coordinates, and by Rose,® in irre-
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charge distributions that should not overlap (to ensure
the convergence of the infinite series) but are other-
wise arbitrary. They are thus valid for molecules as
well as for atoms. However, neither of the results has
a form suitable for our purposes; the first task of our
paper is to disclose the form that is appropriate.

The quantum-mechanical aspect of the dispersion-
force problem is vastly more complicated than the
classical, due mainly to the fact that the unperturbed
wavefunctions required in our perturbation calcula-
tions are unknown except in a few simple cases. One is
forced, in order to discover results of some generality,
to operate with models. In this connection, it has been
noted often, starting with London,? that the Drude
model® offers an especially simple way of deriving the
dipole—dipole contribution to the dispersion energy in
the second order E®; the first-order contribution
vanishes because of the spherical symmetry of the
wavefunctions employed. This model represents each
molecule as an assembly of three-dimensional iso-
tropic harmonic dipole oscillators of a definite
frequency—whose value is suggested by the optical
dispersion curve of the chemical species. With its aid,
London found the simple and familiar result

E® = —3hya?R-S,

v frequency, « molecular polarizability,

for two similar molecules in their ground states.’
Margenau,? carrying the use of the isotropic oscillator
model further, applied it also to the dipole-quadrupole
and quadrupole-quadrupole terms of ¥ to get further
terms of E®, proportional to R~® and R~1°, respec-
tively. Heller* did the same for unlike interacting
molecules up to terms of the order R~12. Finally, the
complete energy series

0
E(Z) _ EZC”R—Zn—d

was established by Brooks! (using the Carlson-
Rushbrooke expansion of V) for like molecules and by
Fontanal® (using the Rose expansion) for unlike
molecules. These series, which should be applied only
to atoms and spherical molecules, were demonstrated
to provide an asymptotic expansion of the dispersion
energy,'®'? and are rather useful and reliable if
suitably truncated.!*-1?

? F. London, Z. Physik. Chem. (Leipzig) B11, 222 (1930).

8 See, for example, J. Hirschfelder, C. Curtiss, and R. Bird,
Molecular Theory of Gases and Liquids (John Wiley & Sons, Inc.,
New York, 1954), p. 956.

9 H. Margenau, J. Chem. Phys. 6, 896 (1938).

10 F, C. Brooks, Phys. Rev. 86, 92 (1952).

11 P, R. Fontana, Phys. Rev. 123, 1865 (1961).

12 A. Dalgarno and J. T. Lewis, Proc. Phys. Soc. (London) A69,
57 (1956).
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Our main object in the present paper is to discover
an analog of the Brooks—Fontana energy series
applicable to nonspherical molecules possessing axial
symmetry. In doing this, we neglect, as did these
authors, third- and higher-order perturbation contri-
butions; remarks on the importance of such correc-
tions have appeared elsewhere.!*!* The model which
suggests itself as appropriate to axially symmetric
molecules is one in which the forementioned isotropic
oscillators are replaced by oscillators having a partic-
ular frequency along the moilecular axis and a dif-
ferent one in the directions perpendicular thereto.
This semi-isotropic oscillator model also originated
with, and was employed by, London who quoted the
solution of our problem as it concerns the dipole-
dipole term of ¥, which is his well-known R~ formula
with its characteristic dependence on the relative
orientations of the molecular axes.! The steps leading
from London’s model to his formula were made
explicit in a recent paper by one of us.?® Our present
method is essentially a generalization of the one
employed there; but, while the physical basis remains
unchanged, our mathematical attack will perforce
proceed on an entirely different level.

2. EXPANSION OF COULOMB POTENTIAL
RELATIVE TO BODY AXES OF MOLECULES

As we are interested in the electrostatic interaction of
two neutral charge distributions, we may initially
confine ourselves to a study of the Coulomb inter-:
action potential ¥ between two finite electric dipoles,
each composed of the charges e, —e, and having the
moments er’ and er”, respectively. If R denotes the
vector stretching from the positive charge (origin) of
the first dipole to that of the second dipole, then,
obviously,

V=eR'+R—1r +r|?—|R-T?
— R+ (D)

From here on we conveniently set e = 1 until further
notice.
The Taylor expansion of V is easily seen to be

V= nngn—l ’ (2)

with
n—1

Voa=s — U vy Oy % 3

= rl(n—r)!
and it converges if both r’ and r” are less than R.

13 W, L. Bade, J. Chem. Phys. 27, 1280 (1957).
1 F. London, J. Phys. Chem. 46, 305 (1942).
15 A, J. van der Merwe, Z. Physik 196, 212 (1966).



SECOND-ORDER DISPERSION ENERGY SERIES

In order to obtain results in irreducible tensor form,8
we resolve all vectors and vector operators in their
spherical components which are defined for any
vector A = (4,, 4,, 4,) by

Ag = F2 34, £ id,), A, = A4,.
In terms of their spherical components, the scalar

product of any two vectors or vector operators A
and B becomes

AB=2(—104,B_,, n=0, £1,
n
a result we use forthwith to further develop Eq. (3).

First we find the effect of applying an operator
(a -+ V)?, with a any constant vector and p an integer,

541

to the irregular solid harmonic
TP(R) = RTTYHR), 4

R being a unit vector in the direction of R. We invoke
to this end the formula

3, Y™ = (—1)*(s + 1)@2s + D
X{s+1 1 m+p —uls mITE (5

which is a special case of the well-known gradient
formula??; the 9, signify the spherical components of
the operator V, and a Clebsch~Gordan coefficient
appears on the right. Repeated application of (5) leads,
when the tabulated values of the Clebsch—Gordan
coefficients are inserted, to

Frm = (_l)k[(zs + Dk +s —ml(k+s+ m)T n
0e 2k + 25 + D(s — m)! (s + m)!

and

T (6)

25 4 D(2k + 5 + m)! ]* m
ot T = (— 1 Trs, 7
= =D [2"(2k +2+ DsEmr] @)
cf. Ref. 6. From Eqs. (6) and (7) it follows, in a straightforward manner, that

rmmy O [@S + D@ +5s—m =201 (p+ 5+ m + 201 _(—1)*'p! ag el
(@-V)’T(R) —Z I: 21(2}7 + 25 + 1)(s + m)! (s — m)! :|

wherein the summation indices assume the values
I=0,1,+,p; k=~ —H+1,- 4

The correctness of this equation may be verified by
induction.

We employ formula (8) in the evaluation of V,_,,
Eq. (3), by identifying the vector a successively with
the displacement vectors r’ and r” and by observing
that

R = (4m)tY2. 9)

In so doing, we suppose that r’ and r” are resolved in
. Pp -
spherical components x, and x,, respectively, relative

3 (—1) ! x:)r—zle_%llﬁklxi%tl—kl

THR),
(8)

—DI'GlI+ R G - k)

to a “primed” coordinate system S’, associated with
the first dipole, and a “doubly primed” system S”,
associated with the second dipole. These systems are
fully defined below, but at present it suffices to
imagine that a rotation through the Euler angles o,
B, y carries the axes of S” over into those of S’. If
the polar angles of R are §’, ¢’ in the system S’ and
6", ¢" in §”, then the matrix D(«py) representing this
rotation is determined by the transformation equa-
tion?®

T2, ¢) = g Doz (B YO, 7). (10)

By virtue of Eqs. (8)-(10), one can now write

@ - VYR =Z [4"(r — 2k)! (r + 2ky)!
2"2r + 1)
and

(r = W Gh + k)! Gh — k!

T, 4) (1n

x:; n—r-lzxi%.lg-%kzx;éla—kg

@ -V, &) =Z(—1)"""’=(n — !

(=1 — )Gl + k) 31, — ky)!
% l:(Zr + D(n — m — 2k)! (n + m + 2k,)!

2%2n 4+ 1)(r + m)! (r — m)!
16 See, for example, M. E. Rose, Elementary Theory of Angular Momentum (John Wiley & Sons, Inc., New York, 1957), Chap. 4.

17 Reference 16, Eq. (6.42).
18 We follow the notation (except for typographical variations) and conventions of Ref. 16.

3
} DT, o0 (aBy) T B0, 7). (12)
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Substitution of the last two equations in Eq. (3) transforms it into

V. "‘Z( 1)"+r-—l1—ln( xﬁr—hxilﬁklxllhl_kl ) xsn_'—l’xﬁlﬁk’x{hrk’
- (r—I'GhL + k)G — k! ((" —r—=L)GlL+ k) 3, — k) !)

y [477(;« — 2k)!(r 4 2k)! (n — m — 2ky)! (n + m + 2k;)!
2100 + 1)(r + m)! (r — m)!

whereby we have expressed the Coulomb potential
energy V relative to two arbitrary coordinate frames.
For this result to become pertinent to our physical
problem, it is necessary to go one step further and
relate the coordinate axes to the symmetry directions of
axially symmetric molecules.

We achieve this by requiring, in the first place, that
the axes of z' and z", which by earlier implication
make the angles 6" and 6” with R, coincide with the
symmetry axes of the first and second molecules,
respectively. Moreover, we choose the remaining axes
such that the x” axis is coplanar with the z’ axis and R
and make an angle 0’ + %= with the latter, while the
y' axis completes the right-handed rectangular set of
axes. The axes of x” and y” are specified in a like
manner; and the z’x" and z"x” planes, intersecting along
R, include the angle ¢ between them.

It will be realized, on some reflection, that the
matrix representing the rotation between the systems

xg‘—llxéllri-klxi%ll"kl

%
] D, 00 (eBY) TIHE7, 87, (13)

S” and S’ just introduced is supplied by
Drn(aBy) = 2, D0 — 6" — @)D,,(0 6" 0)

= 3 iy nl0) drn )€™,

where the matrix elements of d” are defined by!®

@a0) = [(r + W) (r — W (r + m)! (r — m)!
(—I)S(COS %B)ZH—n—m—Zs(_Sl'n %0)m—n+2s
s (r—m—s)Ir+n—9)G6+m—n's’
(15)
the sum being extended over all integral values of s
for which the factorial arguments are greater than or

equal to zero. We observe furthermore that ¢” = =,
by definition of the x” axis, and that?®

3
Y™, 7) = (—1)*"(2" o ‘) o). (16)

Insertion of Eqs. (14) and (16) in Eq. (13) finally leads to

a4

LN gyt
b= o 2 0 et ot @

) ( x:;n—r—l,xﬁ%‘.lg—i—kgth,——k, )
(n—r = GL + k! (3, — ko)!

« [(r — 2 (r + 2k (n — m — 2k)! (n + m + 2k2)!]*
2uth(r — m)! (r + m)!

wherein the summation indices vary by integral steps
between the following limits: r=1,:-:,n—1;
L=0,--,riky=—%," ,4L;Lh=0,",n—r;
ko= —3bL, -, 3l,;;m,m = —r,--+,r. This for-
mula for the electrostatic interaction, which refers (on
substitution of Cartesian for spherical components)
to the physically important directions of the molecules,
has a form tailored to our needs.

3. QUANTUM-MECHANICAL INTERACTION
ENERGY

In the anisotropic oscillator model we treat each
molecule as consisting effectively of a certain number
f of electrons which independently execute simple
harmonic motions about a common fixed point, with
one frequency for the axial direction of the molecule
and another for all the transverse directions.®
Accordingly, the unperturbed wavefunction of a

x [2 Q0 d:,.rzkl(e')e""“"] Ao, (17)

molecule is taken to be a product of wavefunctions in
which each electron is represented by three one-
dimensional oscillator wavefunctions. For simplicity,
we deal initially with only one electromn.

In view of the form of the interaction Hamiltonian
(17), it is clear that our perturbation calculation of the
ground-state dispersion energy requires a knowledge
of matrix elements of the kind (0| & |m), with s, m =
0,1,2, -, between the lowest and the mth energy
eigenstates of a linear harmonic oscillator having the
coordinate £ (= x, y, or z). These matrix elements are
nonzero only if s 4+ m is even and s > m; and then
they are given, for normalized oscillator functions, by

(0] &° |m)
=s!(s —m+ DI(s — m + 1)! 2'm! O, (18)

19 Reference 16, Eq. (4.13).
20 Reference 16, Eq. (4.30).
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where 8 = pwfh = (uc/A®)} (4 and o being the mass
and frequency of the oscillator) measures the stiffness
¢ of the oscillator in the & direction. More conven-
iently, one may write

(0] E™42% |m) = (m + 2p)!/(2"m!)h227p! pimte,  (19)

withp=0,1,2,-

Employing the notatlon |mymy) = |my) Imy) for the
product of state vectors referring to the x and y
directions, respectively, we introduce the quantities

S my = (00] <25 [mymy)/H + B! (4 — 0!
(20)
whose relevant properties are
Skt = (—D%SLE, @)

and S¥% =0 unless /+ m + my is even (ie,
m, + my & 2k is even) and / > m, + m,. In terms of
the S’s and the matrix elements (18), the second-order
perturbation energy corresponding to the interaction
(17) could now be written down as a complicated
function of 8., B,,*, f,, the stiffness parameters
for the axes of x',)’,- -+, z". However, for :xially

symmetric molecules the simplifying assumptions

B.=p,=F and B=p=p"

obtain; and in that case the discussion can proceed
more economically by way of the compound quantities

z Sm1 m—my

which, at least when they are not zero, obey the

X = Sy (22)
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formula
X,l,ﬁ;'x =
= O/}l — 3m)! (32 — Im)!
X (3m — k! Gm + ! (=260 (23)
The result (23) one derives by expanding the basis
vectors |mym,) (for the Cartesian coordinate repre-
sentation) linearly in terms of the basis vectors
appropriate to the representation in plane polar
coordinates,?! calculating matrix elements, and then
applying the addition theorem for binomial coefficients.
The necessary conditions for X*** to be nonzero are:
I4+m, A4+ m, mdI2k, m+x2«all even, I, 1 > m,
k =, lk| < }m; the last two requirements are
expressed by formula (23), while those remaining are
obvious from the definition (22) and the previously
mentioned properties of the S’s.
We introduce, furthermore, the abbreviations

1—kA—x
Xon

% —
ze,, = (2¥/s1)0] z, [my) = (m 1' ﬁs) ((ss r:: 1 11))3'!
3° Pz — my !
and Q4)

|M) = |my) [mg) [mg) |my) [m3) |ms),
where the state vectors on the right pertain to the
axes of x’, y', etc. Then the second-order perturbation
energy for two interacting molecules consisting of
f' and f” charged oscillators,

ven o OV IMYM| V|0
_ppr s Qv IMMLY (0
M+o Ey — E,
becomes, by Eqs. (2) and (17) and on restoring the
symbol e for the electronic charge,

E(2) =

e ()5S

Kzlklkg — (_1)2k1+2kgKn*

wherein

A ST € ) € el A A Ay A
1749 TRy N 25
2(n+v)/2R2+’n+v) ( mJ_ﬂ.L + maﬂz + mJ_ J. + m:; 2 ) ( )
r—k1—ks
=z(_1)m[(r — U (r + 2k) (n —m —2k)! (n + m + 2ka)T
(r — m)! (r + m)!
(26)

[2 ar(0") d,z,cl(e')efﬂ ey o0):

The first summation sign in (25) denotes sums over the
indices #, r, I, I, and their Greek counterparts, with
only even values of n+ v, r+p, L+ 4, L+ 4,
contributing, as well as over k, and k,, with the
—ky, —ky and k,, k, terms being complex conjugate
to one another. The second sum extends over values of
m' = m, + my, m’| = m] + my, m;, m; such that
m\| +m'| +my+my>0equalsn,n—2,n—4,---
(ifn<vorv,yv—2,v—4,---(if n > ).

Equation (25), whose R~® term recovers London’s
formula,' 1 furnishes the dispersion energy to any
order between unexcited axially symmetric molecules
on the basis of the Drude-London model. In applying
our formula to physical problems, it is generally
necessary to use a computer, but the procedure should
be straightforward in view of the care we have taken

21 See J. L. Powell and B. Crasemann, Quantum Mechanics
(Addison-Wesley Publ. Co., Inc., Reading, Mass., 1965), Chap. 7.
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in completely defining our quantities. Also, we ought
to point out that such computations simplify because of
the equality

K?klka(e', eu, (p) = (—1)2kl+2sz::frkzkl(0”, 6’, (p), (27)

a formula which is true on account of the fact that the
rotation inverse to the one studied in Sec. 2 (i.e., with
6", 0', — @ replacing ¢’, 0", @) must produce results
identical with Eqs. (17) and (25).

4, INTERFERENCE AND SPHERICALLY
SYMMETRIC SYSTEMS

A bothersome feature of the energy formula (25)
is the presence of summands with n # », that is, joint
contributions of different multipole terms V,,_; in the
expansion of the classical potential energy; the lowest
such term, stemming from the actions of both V; and
V4, occurs when n, » = 2, 4. It should however be
observed that in the special instance of molecules
having spherical symmetry all these “interference”
terms disappear as we now demonstrate.

In Eq. (25), consider the sum over /;, say, all other
summation indices being held fixed. It follows from
the definitions (22) and (24) that nonzero terms arise
only for I, =m',, m' + 2, (< r), and that this
sum, apart from a proportionality constant, is

1 (&)(r — my — my)

L 2
+ (ﬂ)2(r—mi —m)(r —mi—my—2)
i 2.4 ’

(28)

wherein 7 takes on the values r =m | + my, m’, +
my + 2, (< n—1). Invoking the binomial theo-
rem, one easily sees that the sum (28) reduces to zero
if g/, = B,, unless r = m’; + my, which identifies the
nonvanishing terms in the summation over r in (25)
when the “first” molecule has spherical symmetry.
The sums over /,, 4;, 4; in (25) may be subjected to
similar analysis; we find if both molecules have spheri-
cal symmetry, ie., ) =f,=p" and f| =8, =
B’, that r=p=m| +my and n —r=9v —p=
m’_ + my. This means that, in the summations over
n and v in Eq. (25), contributions to the dispersion
energy are made only by the terms n =v =m' +
mj + m"_ + my, which proves our initial assertion.

One may also note that in the sum (28) it is then
the first term, corresponding to /; = m’, , that survives,

J. H. VAN DER MERWE AND A. J. VAN DER MERWE

and similar conclusions hold for the summations
over I, 4;, and 4,. In total it emerges that only
I, =4 =m' and I, = A, = m'| represent terms con-
tributing to E?) in the present case.

There remains finally the task to derive the special-
ized formula for E®® that obtains under the foregoing
simplifying conditions—which- reduce (23) to a sum
over n, the k’s and m’s alone—and to show that it
recovers previously known results. It should be noted,
to begin with, that, since the dispersion energy for the
spherically symmetric case must be independent of the
angles 6’, 6", @, we can put them all equal to zero, and
Eq. (26) simplifies to

K:"klkg = (_1)%1"! 6k,,-kz- (29)

Next we carry out the sum over k, and k, in (25), with
the aid of the addition theorem for binomial coeffi-
cients, while keeping in mind that, as k; = —k, alone
counts (i.e.,/; + /; and 4, + A, are even), only terms
with m' + m’, even need be taken into account.
Finally, recalling that m’, + mg = rand m’| + m; =
n —r, we sum over m’ , using the same addition
theorem and appealing to the equation

=y YNy 1 _(2m)!
go [4%q)’(n — 29! = 27l (30

in which 2¢ = m’, + m’_ . The outcome is

E® — _ pef'f”
" BR®

n—1

® (2n)!
X Za Zl QR8B! (n — N [rB' + (n — P’

(31
For the special case of similar molecules, 8’ = " = 8,

the summation over r can be performed forthwith,
and we are left with

_peffTT 2ml (2" —2)
BHR® iZa (2R)*"n!np™

E(2) —

(32)

Formulas (31) and (32) are exactly equivalent to those
established by Fontana' and Brooks,'® respectively,
for molecules possessing spherical symmetry.

ACKNOWLEDGMENT

The authors are indebted to Professor E. Tuttle
for suggesting a proof of Eq. (30).



	JMP, Volume 10, Issue 03, Page 0371
	JMP, Volume 10, Issue 03, Page 0397
	JMP, Volume 10, Issue 03, Page 0415
	JMP, Volume 10, Issue 03, Page 0421
	JMP, Volume 10, Issue 03, Page 0426
	JMP, Volume 10, Issue 03, Page 0439
	JMP, Volume 10, Issue 03, Page 0443
	JMP, Volume 10, Issue 03, Page 0447
	JMP, Volume 10, Issue 03, Page 0452
	JMP, Volume 10, Issue 03, Page 0455
	JMP, Volume 10, Issue 03, Page 0467
	JMP, Volume 10, Issue 03, Page 0472
	JMP, Volume 10, Issue 03, Page 0475
	JMP, Volume 10, Issue 03, Page 0480
	JMP, Volume 10, Issue 03, Page 0494
	JMP, Volume 10, Issue 03, Page 0503
	JMP, Volume 10, Issue 03, Page 0506
	JMP, Volume 10, Issue 03, Page 0509
	JMP, Volume 10, Issue 03, Page 0519
	JMP, Volume 10, Issue 03, Page 0524
	JMP, Volume 10, Issue 03, Page 0531
	JMP, Volume 10, Issue 03, Page 0536
	JMP, Volume 10, Issue 03, Page 0539

